Skip to main content

Phylogenetic Analysis of Adenovirus Sequences

Proof of the Necessity of Establishing a Third Genus in the Adenoviridae Family

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 21))

Abstract

Bovine adenovirus (BAV) serotypes 4 through 8 have been found clearly distingushable from BAVs 1,2,3, and 9 and from all other mastadenoviruses, and were therefore classified as subgroup 2 BAVs (1) and were considered as candidate members of a new taxon (2). The distinction was originally based on biological properties, such as the requirement of primary cell culture for propagation, the special appearance of the caused inclusion bodies, and the lack of antigenic crossreaction with other mastadenoviruses (1). The separation was later strengthened by DNA studies revealing special restriction-enzyme pattern, smaller genome size (3) and lack of cross-DNA hybridization with subgroup 1 BAVs (4). Similarly, the egg-drop syndrome (EDS) virus (5) seemed to be an atypical aviadenovirus (69) and was described as a candidate member of a new genus (2). The official classification of subgroup 2 BAVs into a new genus and the EDS virus into a new Aviadenovirus genus was, however postponed, until further evidence is gathered (2,10). Recently, a new ovine adenovirus isolate (OAV287) emerged (11) that differed from the offcially accepted OAV serotypes (12,13). The genome of OAV287 has been completely sequenced and was found to have a genomtc organization different from that of HAV-2 and most of other mastadenoviruses (14,15). Because of the close genetic relationship found (based on comparative study of a single gene sequence), we have informally proposed at different adenovirus meetings that subgroup 2 BAVs, OAV287, and EDS virus should all be classified into a common taxon. This could be a new (third) genus, with a proposed name of A Tadenovirus describing the characteristic high AT content found in their genomes (16). The idea evoked considerable oppositton, perhaps mainly because all the 51 types of human adenovnuses (HAVs) (17,18) are very simtlar to each other compared to the differences between the two subgroups of BAVs containing only nine offictally accepted serotypes (10). Furthermore, the sequencing and genetic study of BAVs (and generally of all animal adenoviruses) were missing, but were required before a decision could have been made. The situatton changed significantly recently, since two animal adenovirus genomes have been completely sequenced (15,19), and our group also have sequenced and analyzed characteristic genome parts of different animal adenoviruses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bartha, A. (1969) Proposal for subgrouping of bovine adenovuuses Acta Vet Hung 19, 319–321.

    CAS  Google Scholar 

  2. Wigand, R., Bartha, A., Dreizin, R. S., Esche, H., Ginsberg, H. S., Green, M. J. C., Kalter, S. S., McFerran, J. B., Petterson, U., Russell, W. C., and Wadell, G. (1982) Adenovindae: second report. Intervzrology 18, 169–176.

    Article  CAS  Google Scholar 

  3. Benko, M., Bartha, A., and Wadell, G. (1988) DNA restriction enzyme analysis of bovine adenoviruses. Intervirology 29, 344–350.

    Google Scholar 

  4. Benkö, M., Harrach, B., and D’Hallum, J. C. (1990) Molecular cloning and physical mapping of the DNA of bovine adenovirus serotype 4. study of the DNA Phylogenetic Calculations 337 homology among bovine, human and porcine adenovnuses. J Gen. Vtrol 71, 465–469.

    Article  Google Scholar 

  5. McFerran, J. B., McCracken, R. M., McKillop, E. R., McNulty, M. S., and Colhns, D S. (1977) Studies on a depressed egg production syndrome in Northern Ireland. Avian Pathol 7, 35–47.

    Article  Google Scholar 

  6. Adair, B. M., McFerran, J. B., Connor, T. J., McNulty, M. S., and McKlllop, E. R. (1979) Btologtcal and physical properties of a virus (strain 127) associated with the egg drop syndrome 1976. Avtan Pathol. 8, 249–264.

    CAS  Google Scholar 

  7. Gelderblom, H. and Maichle-Lauppe, I. (1982) The libres of fowl adenovnuses. Arch. Virol 72, 289–298.

    Article  PubMed  CAS  Google Scholar 

  8. Zsak, L. and Kisary, J. (1981) Studies on egg drop syndrome (EDS) and chick embryo lethal orphan (CELO) avian adenovirus DNAs by restriction endonu-cleases J. Gen Vtrol 56, 87–95.

    Article  CAS  Google Scholar 

  9. Todd, D., McNulty, M. S., and Smyth, J. A. (1988) Differentiation of egg drop syndrome virus isolates by restriction endonuclease analysts of virus DNA Avtan Pathol 17, 909–919.

    CAS  Google Scholar 

  10. Russell, W. C., Adrian, T., Bartha, A., Fujinaga, K, Ginsberg, H. S., Hierholzer, J. C., de Jong, J. C., L1, Q. G., Mautner, V., Nasz, I., and Wadell, G (1995) Family Adenoviridae in Virus Taxonomy-Classtftcation and Nomenclature of Vtruses Sixth Report of the International Committee on Taxonomy of Viruses (Murphy, F. A, Fauquet, C. M., Bishop, D. H. L., Ghabrial, S. A, Jarvis, A W., Martelli, G. P., Mayo, M. A., and Summers, M. D., eds.), Springer-Verlag, Wren, New York, pp 128–133.

    Google Scholar 

  11. Adair, B. M., McKillop, E. R., and Coackley, B. H (1986) Serological identification of an Australian adenovirus isolate from sheep. Australtan Vet J 63, 162.

    Article  CAS  Google Scholar 

  12. Boyl, D. B., Pye, A D., Kocherhans, R., Adatr, B. M., Vratt, S., and Both, G W. (1994) Characterization of Australian ovine adenovirus isolates. Vet Microbiol 41, 281–291.

    Article  Google Scholar 

  13. Adatr, B. M., McFerran, J. B., and McKillop, E. R. (1982) A sixth species of ovine adenovirus isolated from lambs in New Zealand. Arch Virol. 74, 269–275.

    Article  Google Scholar 

  14. Vrati, S., Boyle, D., Kocherhans, R., and Both, G. W. (1995) Sequence of ovine adenovirus homologs for 1OOK hexon assembly, 33K, pVIII, and fiber genes: early region E3 is not in the expected location. Virology 209, 400–408.

    Article  PubMed  CAS  Google Scholar 

  15. Vrati, S., Brookes, D. E., Strike, P., Khatri, A., Boyle, D. B., and Both, G. W (1996) Unique genome arrangement of an ovine adenovirus: identification of new proteins and proteinase cleavage sites. Virology 220, 186–199.

    Article  PubMed  CAS  Google Scholar 

  16. Benko, M and Harrach, B. (1994) Identification of the proteinase gene of bovine adenovirus type 4. Acta Microbiol. Immunol. Hung. 41, 323.

    Google Scholar 

  17. Horwitz, M. S. (1990) Adenoviruses and their replication, in Vzrologv, 2nd ed (Fields, B. N., and Knipe, D. M., eds.), Raven, New York, pp. 1679–1722.

    Google Scholar 

  18. de Jong, J. C., Wermenbol, A. G., Verweij-Uijterwaal, M. W., Slaterus, K. W., Wertheim-van Dillen, P., and Hierholzer, J. C., (1996) Adenoviruses from AIDS patients, including candidate serotypes 50 and 51 of subgenus B1 and D, respectively. Abstracts Xth Int. Congr. Virol. Jerusalem. p, 230.

    Google Scholar 

  19. Cotten, M., Chlocca, S., Kurzbauer, R., Schaffner, G., Baker, A., and Mautner, V. (1996) The complete DNA sequence and genomlc orgamzatlon of the avian adenovrus CELO J Virol 70, 2939–2949.

    PubMed  Google Scholar 

  20. Leigh Brown, A. J. (1994) Methods of evolutionary analysis of viral sequences, in The Evolutionary Biology of Viruses (Morse, S S, ed), Raven, New York, pp 75–84

    Google Scholar 

  21. Felsenstein, J. (1989) PHYLIP-Phylogeny Inference package (version 3.2). Cladistics 5, 164–166.

    Google Scholar 

  22. Felsenstein, J. (1985) Confidence limits on phylogenies an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  23. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local ahgnment search tool J Mol Biol 215, 403–410

    PubMed  CAS  Google Scholar 

  24. Gish, W, and States, D. J. (1993) Identification of protein coding regions by database similarity search Nature Genetics 3, 266–272.

    Article  PubMed  CAS  Google Scholar 

  25. Higgins, D. G., and Sharp, P. M., (1989) Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci 5, 151–153

    PubMed  CAS  Google Scholar 

  26. Higgins, D. G., Bleasby, A. J., and Fuchs, R. (1992) CLUSTAL V improved software for multiple sequence alignment. Comput Appl Biosci 8, 189–191

    PubMed  CAS  Google Scholar 

  27. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice Nucleic Acids Res 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  28. Belák, S. and Pálfi, V. (1974) An adenovirus isolated from sheep and its relationship to type 2 bovine adenovirus Arch Ges Virusforsch 46, 366–369.

    Article  PubMed  Google Scholar 

  29. Belák, S., Berencsi, Gy., Rusvai, M., Lukács, K., and Nász, I. (1983) DNA structure, and hemagglutination properties of bovine adenovirus type 2 strains which bypass species specificity Arch Virol 77, 181–194.

    Article  PubMed  Google Scholar 

  30. Belák, S., Virtanen, A., Zabielski, J., Rusva, M., Berencsi, Gy., and Pettersson, U. (1986) Subtypes of bovine adenovirus type 2 exhibit major differences in region E3. Virology 153, 262–271.

    Article  PubMed  Google Scholar 

  31. Song, B., Hu, S-L., Darai, G., Spindler, K. R., and Young, C. S. H. (1996) Conservation of DNA sequence in the predicted major late promoter regions of selected Mastadenoviruses. Virology 220, 390–401.

    Article  PubMed  CAS  Google Scholar 

  32. Kidd, A. H., Garwicz, D., and O’berg, M (1995) Human and simian adenoviruses phylogenetic inferences from analysis of VA RNA genes. Virology 207, 32–45.

    Article  PubMed  CAS  Google Scholar 

  33. Stewart, C.-B. (1993) The powers and pitfalls of parsimony. Nature 361, 603–607.

    Article  PubMed  CAS  Google Scholar 

  34. Pring-Akerblom, P., and Adnan, T. (1993) The hexon genes of adenoviruses of subgenus C* comparison of the variable regions Res Virolo. 144, 117–127.

    Article  CAS  Google Scholar 

  35. Shinagawa, M., Iida, Y., Matsuda, A., Tsukiyama, T., and Sato, G. (1987) Phylogenetic relationships between adenoviruses as inferred from nucleotide sequences of inverted terminal repeats. Gene 55, 85–93.

    Article  PubMed  CAS  Google Scholar 

  36. Bailey, A. and Mautner, V. (1994) Phylogenetic relationships among adenovirus serotypes. Virology 205, 438–452.

    Article  PubMed  CAS  Google Scholar 

  37. Gnerson, A. W., Nicholson, R, Talbot, P., Webster, A., and Kemp, G. (1994) The protease of adenovirus serotype 2 requires cysteine residues for both activation and catalysis J Gen Virol 75, 2761–2764.

    Article  Google Scholar 

  38. Rancourt, C., Trhanyr, K., Bourbonniere, M., and Weber, J. M (1994) Identification of active-srte residues of the adenovirus encadopeptrdase Proc Nat1 Acad Sci USA 91, 844–847.

    Article  CAS  Google Scholar 

  39. Rancourt C. Keyvani-Amineh H. Sircar S Labrecque P and Weber J. M (1995) Proline 137 IS crttrcal for adenovirus protease encapsidation and activation but not enzyme actirvrty Virology 209 167–17

    Article  PubMed  CAS  Google Scholar 

  40. Homer G. W. Hunter R. Bartha A. and Benko M. 1989 A new subgroup 2 bovme adevirus proposed as the prototype strain 10 Arch Virol 109 121–124

    Article  Google Scholar 

  41. Smyth, J. A., Benko, M., Moffett, D. A., and Harrach, B. (1996) Bovine adenovirus type 10 identified in fatal cases of adenovirus-associated enteric disease in cattle by in sztu hybridization. J Clin Microbiol 34, 1270–1274.

    PubMed  CAS  Google Scholar 

  42. Matiz, K., Benko, M., Zádori, Z, and Harrach, B. (1996) Restriction sate mapping of a bovme adenovnus type 10 strain Acta Vet. Hung 44, 389–394

    PubMed  CAS  Google Scholar 

  43. Hsrao, C. L., Woessner, K. J., Cheng, S. M., Dheer, S. K., Vince, T., Lee, S. G. and Hung, P. P. (1990) Conservation of essential sequences in the maJor late promoter and triparirte leader of the simian adenovirus type 30 Gene 89, 275–277.

    Article  Google Scholar 

  44. Reubel, H. G. and Studdert, M. J. (1996) Identrficatron, molecular cloning and determination of the nucleotide sequence of the hexon gene of equine adenovirus type 1 (EAdV1) Abstracts Xth Int. Congr Virol Jerusalem p 146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Harrach, B., Benkö, M. (1999). Phylogenetic Analysis of Adenovirus Sequences. In: Wold, W.S.M. (eds) Adenovirus Methods and Protocols. Methods in Molecular Medicine™, vol 21. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-551-4:309

Download citation

  • DOI: https://doi.org/10.1385/0-89603-551-4:309

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-551-5

  • Online ISBN: 978-1-59259-603-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics