Skip to main content

Microbial biosensors based on potentiometric detection

  • Protocol
Enzyme and Microbial Biosensors

Part of the book series: Methods in Biotechnology ((MIBT,volume 6))

Abstract

Potentiometric transducers are most commonly used in the development of biosensors and they typically involve a wide range of ion-selective electrodes, such as pH, pNH3, pNH4, pCO2, and so on. These devices generate the potential developed across an ion-selective membrane separating two solutions, proportional to the logarithm of the analyte concentration, according to the Nernst equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bousse, L., Kirk, G., and Sigal, G. (1990) Biosensors for detection of enzymes immobilized in microvolume reaction chambers. Sens Actuators Bl, 555–560.

    Google Scholar 

  2. Moo-Young, M., ed. (1988) Bioreactor Immobilized Enzymes and Cells. Fundamentals and Applications. Elsevier Applied Science, London, UK.

    Google Scholar 

  3. Karube, I. and SangMok Chang, M. E (1991) Microbial biosensors, in Biosensor Principles and Applications (Blum, L. J. and Coulet, P. R., eds.), Marcel Dekker, New York, pp. 267–301.

    Google Scholar 

  4. Tran-Minh, C. (1993) Biosensors. Chapman & Hall, London, UK.

    Google Scholar 

  5. Rechnitz, G. A., Kobos, R. K., Riechel, S. J., and Gebauer, R. (1977) A bioselective membrane electrode prepared with living bacterial cells. Anal Chim Acta 94, 357–365.

    Article  PubMed  CAS  Google Scholar 

  6. Hukuma, H., Obana, H., Yasuda, T, Karube, I., and Suzuki, S. (1980) A potentiometric microbial sensor based on immobilized Eschenchia coli for glutamic acid, Anal. Chim. Acta 116, 61–67.

    Article  Google Scholar 

  7. Jensen, M. A. and Rechnitz, G. A. (1978) Bacterial membrane electrode for λ-cysteine. Anal. Chim. Acta 101, 125–130.

    Article  CAS  Google Scholar 

  8. Rechnitz, G A, Riechel, T L, Kobos, R K., and Meyerhoff, M E (1978) Glutamate selective membrane electrode that uses living bacterial cells. Science 199, 440,441

    Article  PubMed  CAS  Google Scholar 

  9. Di Paolantonio, L., Arnold, M. A., and Rechnitz, G. A (1981) Serine-selective membrane probe based on immobilized anaerobic bacteria and a potentiometric ammonia gas sensor. Anal Chim Acta 128, 121–127.

    Article  Google Scholar 

  10. Matsumoto, K., Seijo, H., Watanabe, T., Karube, I., Satoh, H., and Suzuki, S. (1979) Immobilized whole cell-based flow-type sensor for cephalosporms. Anal. Chim. Acta 105, 429–432.

    Article  CAS  Google Scholar 

  11. Dave, K., Miller, C, and Wild, J. (1993). Characterization of organophosphorus hydrolases and the genetic manipulation of the phosphortnesterase from Pseudomonas diminuta. Chem. Biol Interac 87, 55–68

    Article  CAS  Google Scholar 

  12. Lozinsky V. I., Faleev, M. F, Zubov, A. L., Ruvinov, S. B., Antonova, T. V., Vainerman, E. S., Belikov, V. M., and Rogogin, S. V. (1989) Use of PVA-cryogel entrapped Citrobacter intermedius cells for continuous production of 3-fluoro-Ltyrosine. Biotechnol. Lett. 11(1), 43–48

    Article  Google Scholar 

  13. Rainina, E. I., Varfolomeyev, S. D., Dave, K., and Wild, J. R. (1994) Cryoilmmobilization of organophosphate neurotoxin degrading bacteria in poly(vinyl) alcohol. Proceedings of the 1993 ERDEC Scientific Conference on Chemical Defense Research, US Army, Edgewood, MD, pp. 895–900.

    Google Scholar 

  14. Rainina, E. I., Badalian, I. E., Ignatov, O. V., Fedorov, A. B., Simonian, A. L., and Varfolomeyev, S. D. (1996) Cell biosensor for detection of phenol in aqueous solutions. Appl. Biochem. Biotechnol. 56, 117–127.

    Article  CAS  Google Scholar 

  15. Simonian, A. L., Rainina, E. I., Lozinsky, V. I., Badalian, I. E., Khachatrian, G. E., Tatikian, S. Sh., Makhlis, T. A., and Varfolomeyev, S. D. (1992) A biosensor for L-proline determination by use of immobilized microbial cells. Appl Biochem. Biotechnol. 36, 199–210.

    Article  PubMed  CAS  Google Scholar 

  16. Rainina, E. I., Efremenko, E N., Varfolomeyev, S D., Simonian, A L., and Wild, J. R. (1996) The development of a new biosensor based on recombinant E coli for direct detection of organophosphorous neurotoxins. Biosens Bioelection. 11, 991–1000

    Article  CAS  Google Scholar 

  17. Lozinsky, V. I. and Zubov, A. L. (1995) Russian Patent No. 2036095

    Google Scholar 

  18. Kumaran, S. and Tran-Minh, C. (1992) Determination of organophosphorous and carbamate insecticides by flow-injection analysis. Anal Biochem 200, 187–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Simonian, A.L., Rainina, E.I., Wild, J.R. (1998). Microbial biosensors based on potentiometric detection. In: Mulchandani, A., Rogers, K.R. (eds) Enzyme and Microbial Biosensors. Methods in Biotechnology, vol 6. Humana Press. https://doi.org/10.1385/0-89603-410-0:237

Download citation

  • DOI: https://doi.org/10.1385/0-89603-410-0:237

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-410-5

  • Online ISBN: 978-1-59259-484-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics