Skip to main content

Retroviral Vectors as Insertional Mutagens

  • Protocol
Practical Molecular Virology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 8))

  • 949 Accesses

Abstract

A critical step in the life-cycle of retroviruses is the integration of the double-stranded DNA copy of their RNA genome into the genome of the host cell (1). Although the provirus DNA sequences flanking the site of integration are precisely determined and characteristic of each virus (2), the vast majority of the integrations are the product of nonhomologous recomination events, resulting in the pseudorandom integration of the provirus into the host-cell genome (3,4). Retroviruses can therefore act as agents of insertional mutagenesis. The insertion of the provirus into the genome could, in principle, result in either gene activation or gene inactivation. The insertional inactivation would be the result of provirus integration within the coding or regulatory sequences of the gene of interest, thus disrupting the expression of a functional gene product (513). Insertional activation could be the product of the integration of viral-promoter enhancer elements, contained within the long terminal repeat (LTR) sequences in the vicinity of a silent gene, resulting in the increased transcription of that gene (1426). In addition to these direct as-acting effects, there can be indirect trans-regulatory effects resulting from the presence of the viral genome within the cell, but irrespective of its position of integration. This could be the product of genes or other regulatory elements encoded by the virus. The position-independent effect(s) of retrovirus integration would be easy to identify; they would be present in all cells or in a vastly larger number of cells than would be compatible with low-frequency integrations into specific genomic domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varmus, H. (1988) Retroviruses. Science 240, 1427–1435.

    Article  PubMed  CAS  Google Scholar 

  2. Varmus, H. and Swanstrom, R. (1982) Replication of retroviruses, in RNA Tumour Viruses (Weiss, R., Teich, N., Varmus, H., and Coffin, J., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 369–512.

    Google Scholar 

  3. Hughes, S. H., Shank, P. R., Spector, D. H., Rung, H. G., Bishop, J. M., Varmus, H. E., Vogt, P. K., and Breitman, M. L. (1978) Proviruses of avian sarcoma virus are terminally redundant, coextensive with unintegrated linear DNA and integrated at many sites. Cell 15, 1397–1410.

    Article  PubMed  CAS  Google Scholar 

  4. Shimotohno, K. and Temin, H. M. (1980) No apparent nucleotide sequence specificity in cellular DNA juxtaposed to retrovirus proviruses. Proc. Natl. Acad. Sci. USA 77, 7357–7361.

    Article  PubMed  CAS  Google Scholar 

  5. Jenkins, N. A., Copeland, N. G., Taylor, B. A., and Lee, B. K. (1981) Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature 293, 370–374.

    Article  PubMed  CAS  Google Scholar 

  6. Copeland, N. G., Jenkins, N. A., and Lee, B. K. (1983) Association of the lethal yellow (Ay) coat color mutation with the ecotropic murine leukemia virus genome. Proc. Natl. Acad. Sci. USA 80, 247–249.

    Article  PubMed  CAS  Google Scholar 

  7. Copeland, N. G., Hutchison, K. W., and Jenkins, N. A. (1983) Excision of the DBA ecotropic provirus m dilute coat/color revertants of mice occurs by homologous recombination involving the viral LTRs. Cell 33, 379–387.

    Article  PubMed  CAS  Google Scholar 

  8. Schnieke, A., Harbers, K., and Jaenisch, R. (1983) Embryonic lethal mutation in mice induced by retrovirus insertion into the alpha 1 (I) collagen gene. Nature 304, 315–320.

    Article  PubMed  CAS  Google Scholar 

  9. Jaenisch, R., Harbers, K., Schnieke, A., Lohler, J., Chumakov, I., Jahner, D., Grotkopp, D., and Hoffmann, E. (1983) Germ line integration of Moloney murine leukemia virus at the Movl 3 locus leads to recessive lethal mutation and early embryonic death. Cell 32, 209–216.

    Article  PubMed  CAS  Google Scholar 

  10. Wolf, D. and Rotter, V. (1984) Inactivation of p53 gene expression by an insertion of Moloney murine leukemia virus-like DNA sequence. Mol. Cell Biol. 4,1402–1410.

    PubMed  CAS  Google Scholar 

  11. Frankel, W., Potter, T. A., Rosenberg, N., Lenz, J., and Rajan, T. V. (1985) Retroviral insertional mutagenesis of a target allele in a heterozygous murine cell line. Proc. Natl. Acad. Sci. USA 82,6600–6604.

    Article  PubMed  CAS  Google Scholar 

  12. King, W., Patel, M. D., Lobel, L. I., Goff, S. P., and Chi Nguyen-Huu, M. (1985) Insertion mutagenesis of embryonal carcinoma cells by retroviruses. Science 228, 554–558.

    Article  PubMed  CAS  Google Scholar 

  13. Kuehn, M. R., Bradley, A., Robertson, E. J., and Evans, M. J. (1987) A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298.

    Article  PubMed  CAS  Google Scholar 

  14. Hayward, W. S., Neel, B. G., and Astrin, S. M. (1981) Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290, 475–480.

    Article  PubMed  CAS  Google Scholar 

  15. Varmus, H. E., Quintrell, N., and Oritz, S. (1981) Retroviruses as mutagens: Insertion and excision of a nontransforming provirus alters expression of a resident transforming provirus. Cell 25, 23–36.

    Article  PubMed  CAS  Google Scholar 

  16. Nusse, R. and Varmus, H. E. (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host cell genome. Cell 31, 99–109.

    Article  PubMed  CAS  Google Scholar 

  17. Fung, Y. K. T., Lewis, W. G., Crittenden, L B., and Rung, H. J (1983) Activation of the cellular oncogene c-erbB by LTR insertion: Molecular basis for induction of erythroblastosis by avian leukosis virus. Cell 33, 357–368.

    Article  PubMed  CAS  Google Scholar 

  18. Peters, G., Brookes, S., Smith, R., and Dickson, C. (1983) Tumorigenesis by mouse mammary tumour virus: Evidence for a common region for provirus integration in mammary tumours. Cell 33, 369–377.

    Article  PubMed  CAS  Google Scholar 

  19. Tsichlis, N., Strauss, P. G., and Hu, L. F. (1983) A common region for proviral DNA integration in MoMuLV-induced rat thymic lymphomas. Nature 302, 445–449

    Article  PubMed  CAS  Google Scholar 

  20. Wagner, E. F., Covarrubias, L., Stewart, T. A., and Mintz, B. (1983) Lethalities in mice homozygous for human growth hormone gene sequences integrated in the germ line. Cell 35, 647–655.

    Article  PubMed  CAS  Google Scholar 

  21. Dickson, C., Smith, R., Brookes, S., and Peters, G. (1984) Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2. Cell 37, 529–536.

    Article  PubMed  CAS  Google Scholar 

  22. Steffen, D. (1984) Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc. Natl. Acad. Sci. USA 81, 2097–2101.

    Article  PubMed  CAS  Google Scholar 

  23. Shen-Ong, G. L. C., Potter, M., Mushinski, J. F., Lavu, S., and Reddy, E. P. (1984) Activation of c-myb locus by viral insertional mutagenesis in plasmacytoid lymphosarcomas. Science 226, 1077–1080.

    Article  PubMed  CAS  Google Scholar 

  24. Lemay, G. and Jolicoeur, P. (1984) Rearrangement of a DNA sequence homologous to a cell-virus junction fragment in several Moloney murine leukemia virus-induced rat thymomas. Proc. Natl. Acad. Sci. USA 81, 38–42.

    Article  PubMed  CAS  Google Scholar 

  25. Cuypers, H. T., Selten, G., Quint, W., Zijlstra, M., Maandag, R. E., Boelens, W., van Wezenbeek, P., Melief, C., and Berns, A. (1984) Murine leukemia virus induced T-cell lymphomagenesis: Integration of proviruses in a distinct chromosomal region. Cell 37 141–150.

    Article  PubMed  CAS  Google Scholar 

  26. Stocking, C., Löliger, C., Kawai, M., Suciu, S., Gough, N., and Ostertag, W. (1988) Identification of genes involved in growth autonomy of haematopoietic cells by analysis of factor-independent mutants. Cell 53, 869–879.

    Article  PubMed  CAS  Google Scholar 

  27. Scherdin, U., Rhodes, K., and Breindl, M (1990) Transcriptionally active genome regions are preferred targets for retrovirus integration. J. Virol. 64, 907–912.

    PubMed  CAS  Google Scholar 

  28. Kozak, C. A. (1985) Susceptibility of wild mouse cells to exogenous infection with xenotropic leukemia viruses: Control by a single dominant locus on chromosome 1. J. Virol. 55, 690–695.

    PubMed  CAS  Google Scholar 

  29. Sarrna, P. S., Cheong, M. P., and Hartley, J. W. (1967) A viral influence test for mouse leukemia viruses. Virology 33, 180–184.

    Article  Google Scholar 

  30. Stewart, C. L., Stuhlmann, H., Jahner, D., and Jaenisch, R. (1982) De novo methylation, expression, and infectivity of retroviral genomes introduced into embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 79, 4098–4102.

    Article  PubMed  CAS  Google Scholar 

  31. Hooper, M. L. (1985) Mammalian Cell Genetics. Wiley, New York.

    Google Scholar 

  32. Reik, W., Weiher, H., and Jaenisch, R. (1984) Replication-competent Moloney murine leukemia virus carrying a bacterial suppressor tRNA gene: Selective cloning of proviral and flanking host sequences. Proc. Natl. Acad. Sci. USA 82, 1141–1145.

    Article  Google Scholar 

  33. Lobel, L. I., Patel, M., King, W., Nguyen-Huu, M. C, and Goff, S. P. (1985) Construction and recovery of viable retroviral genomes carrying a bacterial suppressor transfer RNA gene. Science 228, 329–332.

    Article  PubMed  CAS  Google Scholar 

  34. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G T., Erlich, H. A., and Amheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of Sickle cell anaemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  35. Silver, J. and Keerikatte, V. (1989) Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J. Virol. 63, 1925–1928.

    Google Scholar 

  36. Wong, C., Dowling, C. E., Saiki, K, Higuchi, R. G., Erlich, H. A., and Kazazian, H H. (1987) Characterization of β-thalassaemia mutations using direct genomic sequencing of amplified single copy DNA. Nature 330, 384–386.

    Article  PubMed  CAS  Google Scholar 

  37. Miller, A. D. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell Biol. 6, 2895–2902.

    PubMed  CAS  Google Scholar 

  38. Markowitz, D., Goff, S., and Bank, A. (1988) A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol. 62, 1120–1124.

    PubMed  CAS  Google Scholar 

  39. Stacey, A., Arbuthnott, C., Kollek, R., Coggins, L., and Ostertag, W. (1984) Comparison of myeloproliferative sarcoma virus with Moloney murine sarcoma virus variants by nucleotide sequencing and heteroduplex analysis.J. Virol. 50, 725–732.

    PubMed  CAS  Google Scholar 

  40. Markowitz, D., Goff, S., and Bank, A. (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167, 400–406.

    PubMed  CAS  Google Scholar 

  41. Danos, O. and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retrovirus with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85, 6460–6464.

    Article  PubMed  CAS  Google Scholar 

  42. Albritton, L. M., Tseng, L., Scadden, D., and Cunningham, J. M. (1989) A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57, 659–666.

    Article  PubMed  CAS  Google Scholar 

  43. Scadden, D. T., Fuller, B., and Cunningham, J. M. (1990) Human cells infected with retrovirus vectors acquire an endogenous murine provirus. J Virol. 64, 424–427.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 The Humana Press Inc., Clifton, NJ

About this protocol

Cite this protocol

Gäken, J., Farzaneh, F. (1991). Retroviral Vectors as Insertional Mutagens. In: Collins, M.K.L. (eds) Practical Molecular Virology. Methods in Molecular Biology, vol 8. Humana Press. https://doi.org/10.1385/0-89603-191-8:111

Download citation

  • DOI: https://doi.org/10.1385/0-89603-191-8:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-191-3

  • Online ISBN: 978-1-59259-495-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics