Structural Biology with Microfocus Beamlines

  • Kunio Hirata
  • James Foadi
  • Gwyndaf Evans
  • Kazuya Hasegawa
  • Oliver B. Zeldin
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Protein microcrystallography, which analyzes crystals smaller than a few tens of microns, is becoming one of the most attractive fields in structural biology. To realize the complete potential of this technique, it is inevitable that microcrystallography has to be combined with novel data collection instruments and strategies. Recently, a highly brilliant X-ray beam with micron size has enabled the measurement of diffraction data from such microcrystals (Smith JL, Fischetti RF, Yamamoto M, Micro-crystallography comes of age. Curr Opin Struct Biol 22:602–612, 2012). Here, we describe important instrumentation at synchrotron facilities and experimental strategies.

Keywords

Protein crystallography Microcrystals 

References

  1. 1.
    Smith JL, Fischetti RF, Yamamoto M (2012) Micro-crystallography comes of age. Curr Opin Struct Biol 22:602–612CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu Q, Zhang Z, Hendrickson WA (2010) Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. Acta Crystallogr D Biol Crystallogr 67:45–59CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Riekel C, Burghammer M, Schertler G (2005) Protein crystallography microdiffraction. Curr Opin Struct Biol 15:556–562CrossRefPubMedGoogle Scholar
  4. 4.
    Flot D, Mairs T, Giraud T et al (2010) The ID23-2 structural biology microfocus beamline at the ESRF. J Synchrotron Rad 17:107–118CrossRefGoogle Scholar
  5. 5.
    Tanaka H, Adachi M, Aoki T et al (2006) Stable top-up operation at SPring-8. J Synchrotron Rad 13:378–391CrossRefGoogle Scholar
  6. 6.
    Yamauchi K, Mimura H, Inagaki K, Mori Y (2002) Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining. Rev Sci Instrum 73:4028CrossRefGoogle Scholar
  7. 7.
    Yumoto H, Mimura H, Matsuyama S et al (2005) Fabrication of elliptically figured mirror for focusing hard x rays to size less than 50 nm. Rev Sci Instrum 76:063708CrossRefGoogle Scholar
  8. 8.
    Flot D, Gordon EJ, Hall DR et al (2005) The care and nurture of undulator data sets. Acta Crystallogr D Biol Crystallogr 62:65–71CrossRefPubMedGoogle Scholar
  9. 9.
    Igarashi N, Ikuta K, Miyoshi T et al (2008) X-ray beam stabilization at BL-17A, the protein microcrystallography beamline of the photon factory. J Synchrotron Rad 15:292–295CrossRefGoogle Scholar
  10. 10.
    Groves MR, Müller IB, Kreplin X, Müller-Dieckmann J (2007) A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. Acta Crystallogr D Biol Crystallogr 63:526–535CrossRefPubMedGoogle Scholar
  11. 11.
    Gill HS (2010) Evaluating the efficacy of tryptophan fluorescence and absorbance as a selection tool for identifying protein crystals. Acta Cryst F66:364–372Google Scholar
  12. 12.
    Madden JT, DeWalt EL, Simpson GJ (2011) Two-photon excited UV fluorescence for protein crystal detection. Acta Cryst D67:839–846Google Scholar
  13. 13.
    Hirata K, Kawano Y, Ueno G et al (2013) Achievement of protein micro-crystallography at SPring-8 beamline BL32XU. J Phys Conf Ser 425:012002CrossRefGoogle Scholar
  14. 14.
    Broennimann C, Eikenberry EF, Henrich B et al (2006) The PILATUS 1M detector. J Synchrotron Rad 13:120–130CrossRefGoogle Scholar
  15. 15.
    Hasegawa K, Hirata K, Shimizu T et al (2009) Development of a shutterless continuous rotation method using an X-ray CMOS detector for protein crystallography. J Appl Cryst 42:1165–1175CrossRefGoogle Scholar
  16. 16.
    Ben-Shem A, Garreau de Loubresse N, Melnikov S et al (2011) The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334:1524–1529CrossRefPubMedGoogle Scholar
  17. 17.
    Sanishvili R, Nagarajan V, Yoder D et al (2008) A 7 microm mini-beam improves diffraction data from small or imperfect crystals of macromolecules. Acta Cryst D64:425–435Google Scholar
  18. 18.
    Hikima T, Hashimoto K, Murakami H et al (2013) 3D manipulation of protein microcrystals with optical tweezers for X-ray crystallography. J Phys Conf Ser 425:012011CrossRefGoogle Scholar
  19. 19.
    Wagner A, Duman R, Stevens B, Ward A (2013) Microcrystal manipulation with laser tweezers. Acta Cryst D69:1297–1302Google Scholar
  20. 20.
    Soares AS, Engel MA, Stearns R et al (2011) Acoustically mounted microcrystals yield high-resolution X-ray structures. Biochemistry 50:4399–4401CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bingel-Erlenmeyer R, Olieric V, Grimshaw JPA et al (2011) SLS crystallization platform at beamline X06DA – a fully automated pipeline enabling in Situ X-ray diffraction screening. Cryst Growth Des 11:916–923CrossRefGoogle Scholar
  22. 22.
    Jacquamet L, Ohana J, Joly J et al (2004) A new highly integrated sample environment for protein crystallography. Acta Cryst D60:888–894Google Scholar
  23. 23.
    le Maire A, Gelin M, Pochet S et al (2011) In-plate protein crystallization, in situ ligand soaking and X-ray diffraction. Acta Cryst D67:747–755Google Scholar
  24. 24.
    Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hilgart MC, Sanishvili R, Ogata CM et al (2011) Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. J Synchrotron Rad 2011:18Google Scholar
  26. 26.
    Cherezov V, Hanson MA, Griffith MT et al (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 m size X-ray synchrotron beam. J R Soc Interface 6:S587–S597CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang Z, Sauter NK, van den Bedem H et al (2006) Automated diffraction image analysis and spot searching for high-throughput crystal screening. J Appl Cryst 39:112–119CrossRefGoogle Scholar
  28. 28.
    Stepanov S, Makarov O, Hilgart M et al (2011) JBluIce-EPICS control system for macromolecular crystallography. Acta Cryst D67:176–188Google Scholar
  29. 29.
    Rasmussen SGF, Choi H-J, Rosenbaum DM et al (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–387CrossRefPubMedGoogle Scholar
  30. 30.
    Nave C, Garman EF (2005) Towards an understanding of radiation damage in cryocooled macromolecular crystals. J Synchrotron Rad 12:257–260CrossRefGoogle Scholar
  31. 31.
    Garman EF (2010) Research papers. Acta Cryst D66:339–351Google Scholar
  32. 32.
    Holton JM, Frankel KA (2010) The minimum crystal size needed for a complete diffraction data set. Acta Cryst D66:393–408Google Scholar
  33. 33.
    Paithankar KS, Owen RL, Garman EF (2009) Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. J Synchrotron Rad 16:152–162CrossRefGoogle Scholar
  34. 34.
    Paithankar KS, Garman EF (2010) Know your dose: RADDOSE. Acta Cryst D66:381–388. doi:10.1107/S0907444910006724 1–8Google Scholar
  35. 35.
    Weik M, Ravelli RB, Silman I et al (2001) Specific protein dynamics near the solvent glass transition assayed by radiation-induced structural changes. Protein Sci 10:1953–1961CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Leal RMF, Bourenkov GP, Svensson O et al (2011) Experimental procedure for the characterization of radiation damage in macromolecular crystals. J Synchrotron Rad 18:381–386. doi:10.1107/S0909049511002251 1–6CrossRefGoogle Scholar
  37. 37.
    Owen RL, Axford D, Nettleship JE et al (2012) Research papers. Acta Cryst D68:810–818. doi:10.1107/S0907444912012553 1–9Google Scholar
  38. 38.
    Owen RL, Yorke BA, Gowdy JA, Pearson AR (2011) Revealing low-dose radiation damage using single-crystal spectroscopy. J Synchrotron Rad 18:367–373CrossRefGoogle Scholar
  39. 39.
    Corbett MC, Latimer MJ, Poulos TL et al (2007) Research papers. Acta Cryst D63:951–960Google Scholar
  40. 40.
    Burmeister WP (2000) Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Cryst D56:328–341Google Scholar
  41. 41.
    Ravelli RB, McSweeney SM (2000) The “fingerprint” that X-rays can leave on structures. Structure 8(3):315–328Google Scholar
  42. 42.
    Weik M, Ravelli RB, Kryger G et al (2000) Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci U S A 97:623–628CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ramagopal UA, Dauter Z, Thirumuruhan R et al (2005) Radiation-induced site-specific damage of mercury derivatives: phasing and implications. Acta Cryst D61:1289–1298Google Scholar
  44. 44.
    Owen RL, Rudiño-Piñera E, Garman EF (2006) Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci U S A 103:4912–4917CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kmetko J, Husseini NS, Naides M et al (2006) Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 62:1030–1038CrossRefPubMedGoogle Scholar
  46. 46.
    Murray JW, Garman EF, Ravelli RBG (2004) X-ray absorption by macromolecular crystals: the effects of wavelength and crystal composition on absorbed dose. J Appl Crystallogr 37:513–522CrossRefGoogle Scholar
  47. 47.
    Krojer T, von Delft F (2011) Assessment of radiation damage behaviour in a large collection of empirically optimized datasets highlights the importance of unmeasured complicating effects. J Synchrotron Rad 18:387–397CrossRefGoogle Scholar
  48. 48.
    Zeldin OB, Gerstel M, Garman EF (2013) Optimizing the spatial distribution of dose in X-ray macromolecular crystallography. J Synchrotron Rad 20:49–57CrossRefGoogle Scholar
  49. 49.
    Zeldin OB, Gerstel M, Garman EF (2013) RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J Appl Cryst 46:1225–1230CrossRefGoogle Scholar
  50. 50.
    Liu Q, Zhang Z, Hendrickson WA (2011) Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. Acta Crystallogr D Biol Crystallogr 67:45–59CrossRefPubMedGoogle Scholar
  51. 51.
    Liu Q, Dahmane T, Zhang Z et al (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–1037CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Liu Q, Liu Q, Hendrickson WA (2013) Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data. Acta Crystallogr D Biol Crystallogr 69:1314–1332CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Giordano R, Leal RMF, Bourenkov GP et al (2012) Research papers. Acta Cryst D68:649–658Google Scholar
  54. 54.
    Foadi J, Aller P, Alguel Y et al (2013) Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 69:1617–1632CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Everitt BS, Landau S, Leese M, Stahi D (2011) Cluster analysis, 5th edn. Wiley, New YorkCrossRefGoogle Scholar
  56. 56.
    Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323CrossRefGoogle Scholar
  57. 57.
    Leslie AGW, Powell HR (2007) Processing diffraction data with MOSFLM. Evolving Methods Macromol Crystallogr 245:41–45, 978-1-4020-6314-5CrossRefGoogle Scholar
  58. 58.
    Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Cryst D66:133–144Google Scholar
  59. 59.
    Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Cryst D67:235–242Google Scholar
  60. 60.
    McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Research papers. J Appl Cryst 40:658–674CrossRefGoogle Scholar
  61. 61.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D53:240–255Google Scholar
  62. 62.
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Research papers. Acta Cryst D66:486–501Google Scholar
  63. 63.
    Hanson MA, Roth CB, Jo E et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sanishvili R, Yoder DW, Pothineni SB et al (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc Natl Acad Sci 108:6127–6132CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kato HE, Zhang F, Yizhar O et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tanaka Y, Hipolito CJ, Maturana AD et al (2014) Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496:247–251CrossRefGoogle Scholar
  67. 67.
    Nishizawa T, Kita S, Maturana AD et al (2013) Structural basis for the counter-transport mechanism of a H+/Ca2+ exchanger. Science 341:168–172CrossRefPubMedGoogle Scholar
  68. 68.
    Kumazaki K, Chiba S, Takemoto M et al (2014) Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509:516–520CrossRefPubMedGoogle Scholar
  69. 69.
    Arndt UW (1984) Optimum X-ray wavelength for protein crystallography. J Appl Cryst 17:118–119CrossRefGoogle Scholar
  70. 70.
    Helliwell JR (1984) Synchrotron X-radiation protein crystallography: instrumentation, methods and applications. Rep Prog Phys 47:1403–1497CrossRefGoogle Scholar
  71. 71.
    Hasegawa K, Shimizu N, Okumura H et al (2013) Diffraction structural biology. J Synchrotron Rad 20:910–913CrossRefGoogle Scholar
  72. 72.
    Moukhametzianov R, Burghammer M, Edwards PC et al (2008) Protein crystallography with a micrometre-sized synchrotron-radiation beam. Acta Cryst D64:158–166Google Scholar
  73. 73.
    Cowan JA, Nave C (2008) The optimum conditions to collect X-ray data from very small samples. J Synchrotron Rad 15:458–462CrossRefGoogle Scholar
  74. 74.
    Nave C, Hill MA (2005) Radiation damage. J Synchrotron Rad 12:299–303CrossRefGoogle Scholar
  75. 75.
    Fourme R, Honkimaki V, Girard E et al (2012) Reduction of radiation damage and other benefits of short wavelengths for macromolecular crystallography data collection. J Appl Cryst 45:652–661CrossRefGoogle Scholar
  76. 76.
    Shimizu N, Hirata K, Hasegawa K et al (2006) Dose dependence of radiation damage for protein crystals studied at various X-ray energies. J Synchrotron Rad 14:4–10CrossRefGoogle Scholar
  77. 77.
    Chapman HN, Fromme P, Barty A et al (2012) Femtosecond X-ray protein nanocrystallography. Nature 469:73–77Google Scholar
  78. 78.
    Redecke L, Nass K, DePonte DP et al (2013) Natively inhibited trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 339:227–230CrossRefPubMedGoogle Scholar
  79. 79.
    Yu C, Zhang YL, Pan WW et al (2013) CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 342:1518–1521CrossRefPubMedGoogle Scholar
  80. 80.
    Hirata K, Shinzawa-Itoh K, Yano N et al (2014) Determination of damage-free crystal structure of an X-ray–sensitive protein using an XFEL. Nat Meth 11:734–736CrossRefGoogle Scholar
  81. 81.
    Cohen AE, Soltis SM, Gonzalez A, et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. In: Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1418733111
  82. 82.
    Kupitz C, Basu S, Grotjohann I et al (2014) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–265CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tenboer J, Basu S, Zatsepin N et al (2014) Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–1246CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Schlichting I (2015) Feature articles. IUCrJ 2:246–255. doi:10.1107/S205225251402702X
  85. 85.
    Kern J, Yachandra VK, Yano J (2015) Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers. Curr Opin Struct Biol 34:87–98CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Kunio Hirata
    • 1
    • 2
  • James Foadi
    • 3
    • 4
  • Gwyndaf Evans
    • 3
    • 4
  • Kazuya Hasegawa
    • 5
  • Oliver B. Zeldin
    • 6
  1. 1.RIKEN/SPring-8 CenterSayo-gunJapan
  2. 2.JST/PRESTOKawaguchiJapan
  3. 3.Diamond Light SourceHarwell Science and Innovation CampusOxfordshireUK
  4. 4.Membrane Protein Laboratory, Diamond Light SourceHarwell Science and Innovation CampusOxfordshireUK
  5. 5.JASRI/SPring-8Sayo-gunJapan
  6. 6.Department of Molecular and Cellular PhysiologyStanford UniversityStanfordUSA

Personalised recommendations