Skip to main content

Array CGH

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Abstract

Array comparative genome hybridization, array CGH or aCGH, enables dense interrogation of specific loci or the entire human genome, and even allele-specific characterization of single nucleotide polymorphisms (SNPs); they are commonly referred to as oligoarrays and SNP arrays, respectively, or chromosomal microarrays in general. Here, we present an overview of the state of the field, potential applications, detailed protocols on their use, and a troubleshooting guide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solinas-Toldo S, Lampel S, Stilgenbauer S et al (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407

    Article  CAS  PubMed  Google Scholar 

  2. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    Article  CAS  PubMed  Google Scholar 

  3. Cai WW, Mao JH, Chow CW et al (2002) Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays. Nat Biotechnol 20:393–396

    Article  CAS  PubMed  Google Scholar 

  4. Albertson DG, Pinkel D (2003) Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 12(Spec No 2):R145–R152

    Google Scholar 

  5. Shaw-Smith C, Redon R, Rickman L et al (2004) Microarray based comparative genomic hybridization (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Menten B, Maas N, Thienpont B et al (2006) Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. J Med Genet 43:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf M, Mousses S, Hautaniemi S et al (2004) High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia 6:240–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dhami P, Coffey AJ, Abbs S et al (2005) Exon array CGH: detection of copy-number changes at the resolution of individual exons in the human genome. Am J Hum Genet 76:750–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brennan C, Zhang Y, Leo C et al (2004) High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res 64:4744–4748

    Article  CAS  PubMed  Google Scholar 

  10. Vissers LE, de Vries BB, Osoegawa K et al (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73:1261–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vermeesch JR, Fiegler H, de Leeuw N et al (2007) Guidelines for molecular karyotyping in constitutional genetic diagnosis. Eur J Hum Genet 15:1105–1114

    Article  CAS  PubMed  Google Scholar 

  12. Dave BJ, Sanger WG (2007) Role of cytogenetics and molecular cytogenetics in the diagnosis of genetic imbalances. Semin Pediatr Neurol 14:2–6

    Article  PubMed  Google Scholar 

  13. Stankiewicz P, Beaudet AL (2007) Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 17:182–192

    Article  CAS  PubMed  Google Scholar 

  14. Miller DT, Adam MP, Aradhya S et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rickman L, Fiegler H, Shaw-Smith C et al (2006) Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J Med Genet 43:353–361

    Article  CAS  PubMed  Google Scholar 

  16. Brady PD, Devriendt K, Deprest J et al (2012) Array-based approaches in prenatal diagnosis. Methods Mol Biol 838:151–171

    Article  CAS  PubMed  Google Scholar 

  17. Wapner RJ, Martin CL, Levy B et al (2012) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367:2175–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brady PD, Delle Chiaie B et al (2014) A prospective study of the clinical utility of prenatal chromosomal microarray analysis in fetuses with ultrasound abnormalities and an exploration of a framework for reporting unclassified variants and risk factors. Genet Med 16:469–476

    Article  CAS  PubMed  Google Scholar 

  19. Shaffer LG, Dabell MP, Fisher AJ et al (2012) Experience with microarray-based comparative genomic hybridization for prenatal diagnosis in over 5000 pregnancies. Prenat Diagn 32:976–985

    Article  PubMed  PubMed Central  Google Scholar 

  20. Armengol L, Nevado J, Serra-Juhé C et al (2012) Clinical utility of chromosomal microarray analysis in invasive prenatal diagnosis. Hum Genet 131:513–523

    Article  CAS  PubMed  Google Scholar 

  21. Owens B (2012) Genomics: the single life. Nature 491:27–29

    Article  CAS  PubMed  Google Scholar 

  22. Harper JC, Harton G (2010) The use of arrays in preimplantation genetic diagnosis and screening. Fertil Steril 94:1173–1177

    Article  CAS  PubMed  Google Scholar 

  23. Alfarawati S, Fragouli E, Colls P et al (2011) First births after preimplantation genetic diagnosis of structural chromosome abnormalities using comparative genomic hybridization and microarray analysis. Hum Reprod 26:1560–1574

    Article  CAS  PubMed  Google Scholar 

  24. Fiorentino F, Spizzichino L, Bono S et al (2011) PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization. Hum Reprod 26:1925–1935

    Article  CAS  PubMed  Google Scholar 

  25. Iafrate AJ, Feuk L, Rivera MN et al (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951

    Article  CAS  PubMed  Google Scholar 

  26. Sebat J, Lakshmi B, Troge J et al (2004) Large-scale copy number polymorphism in the human genome. Science 305:525–528

    Article  CAS  PubMed  Google Scholar 

  27. Redon R, Ishikawa S, Fitch KR et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Locke DP, Segraves R, Carbone L et al (2003) Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genome Res 13:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilson GM, Flibotte S, Missirlis PI et al (2006) Identification by full-coverage array CGH of human DNA copy number increases relative to chimpanzee and gorilla. Genome Res 16:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jacobs K, Mertzanidou A, Geens M et al (2014) Low-grade chromosomal mosaicism in human somatic and embryonic stem cell populations. Nat Commun 5:4227

    CAS  PubMed  Google Scholar 

  31. Woodfine K, Fiegler H, Beare DM et al (2004) Replication timing of the human genome. Hum Mol Genet 13:191–202

    Article  CAS  PubMed  Google Scholar 

  32. Woodfine K, Carter NP, Dunham I et al (2005) Investigating chromosome organization with genomic microarrays. Chromosome Res 13:249–257

    Article  CAS  PubMed  Google Scholar 

  33. Vanneste E, Voet T, Le Caignec C et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15:577–583

    Article  CAS  PubMed  Google Scholar 

  34. Voet T, Vanneste E, Vermeesch JR (2011) The human cleavage stage embryo is a cradle of chromosomal rearrangements. Cytogenet Genome Res 133:160–168

    Article  CAS  PubMed  Google Scholar 

  35. Komura D, Shen F, Ishikawa S et al (2006) Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16:1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Faas BH, van der Burgt I, Kooper AJ et al (2010) Identification of clinically significant, submicroscopic chromosome alterations and UPD in fetuses with ultrasound anomalies using genome-wide 250k SNP array analysis. J Med Genet 47:586–594

    Article  CAS  PubMed  Google Scholar 

  37. Treff NR, Su J, Tao X et al (2010) Accurate single cell 24 chromosome aneuploidy screening using whole genome amplification and single nucleotide polymorphism microarrays. Fertil Steril 94:2017–2201

    Article  CAS  PubMed  Google Scholar 

  38. Brezina PR, Benner A, Rechitsky S et al (2011) Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome. Fertil Steril 95(1786):e5–e8

    PubMed  Google Scholar 

  39. Treff NR, Northrop LE, Kasabwala K et al (2011) Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil Steril 95:1606.e1–1612.e2

    Article  Google Scholar 

  40. Natesan SA, Bladon AJ, Coskun S et al (2014) Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet Med 16:838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zamani Esteki M, Dimitriadou M, Mateiu L, Melotte C et al (2015) Concurrent whole-genome haplotyping and copy-number profiling of single cells. Am J Hum Genet 96:894–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dimitriadou E, Zamani Esteki M et al (2015) Copy number variation analysis by array analysis of single cells following whole genome amplification. Methods Mol Biol 1347:197–219

    Article  PubMed  Google Scholar 

  43. Fiegler H, Carr P, Douglas EJ et al (2003) DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 36:361–374

    Article  CAS  PubMed  Google Scholar 

  44. Fiegler H, Redon R, Carter NP (2007) Construction and use of spotted large-insert clone DNA microarrays for the detection of genomic copy number changes. Nat Protoc 2:577–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vermeesch JR, Melotte C, Froyen G, Van Vooren S et al (2005) Molecular karyotyping: array CGH quality criteria for constitutional genetic diagnosis. J Histochem Cytochem 53:413–422

    Article  CAS  PubMed  Google Scholar 

  46. Nature Protocols. http://www.nature.com/nprot/index.html

  47. Fiegler H, Redon R, Andrews D et al (2006) Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 16:1566–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Le Caignec C, Spits C, Sermon K et al (2006) Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res 34:e68

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wilson IM, Davies JJ, Weber M et al (2006) Epigenomics: mapping the methylome. Cell Cycle 5:155–158

    Article  CAS  PubMed  Google Scholar 

  50. Vissers LE, Gilissen C, Veltman JA (2016) Genetic studies in intellectual disability and related disorders. Nat Rev Genet 17:9–18

    Article  CAS  PubMed  Google Scholar 

  51. de Ligt J, Willemsen MH, van Bon BW et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367:1921–1929

    Article  PubMed  Google Scholar 

  52. Iglesias A, Anyane-Yeboa K, Wynn J et al (2014) The usefulness of whole-exome sequencing in routine clinical practice. Genet Med 16:922–931

    Article  PubMed  Google Scholar 

  53. Carss KJ, Hillman SC, Parthiban V et al (2014) Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. Hum Mol Genet 23:3269–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Drury S, Williams H, Trump N et al (2015) Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn 35:1010–1017

    Article  CAS  PubMed  Google Scholar 

  55. Fiorentino F, Bono S, Biricik A et al (2014) Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod 29:2802–2813

    Article  PubMed  Google Scholar 

  56. Lo YM (2013) Non-invasive prenatal testing using massively parallel sequencing of maternal plasma DNA: from molecular karyotyping to fetal whole-genome sequencing. Reprod Biomed Online 27:593–598

    Article  CAS  PubMed  Google Scholar 

  57. Bayindir B, Dehaspe L, Brison N et al (2015) Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management. Eur J Hum Genet 23:1286–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sante T, Vergult S, Volders PJ et al (2014) ViVar: a comprehensive platform for the analysis and visualization of structural genomic variation. PLoS One 9:e113800

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lingjaerde OC, Baumbusch LO, Liestøl K et al (2005) CGH-Explorer: a program for analysis of array-CGH data. Bioinformatics 21:821–822

    Article  CAS  PubMed  Google Scholar 

  60. Liva S, Hupé P, Neuvial P et al (2006) CAPweb: a bioinformatics CGH array analysis platform. Nucleic Acids Res 34:W477–W481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van Houte BP, Binsl TW, Hettling H et al (2009) CGHnormaliter: an iterative strategy to enhance normalization of array CGH data with imbalanced aberrations. BMC Genomics 10:401

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hofmann WA, Weigmann A, Tauscher M et al (2009) Analysis of array-CGH data using the R and Bioconductor software suite. Comp Funct Genomics 2009:201325

    Article  PubMed Central  Google Scholar 

  63. Dudoit S, Gentleman RC, Quackenbush J (2003) Open source software for the analysis of microarray data. Biotechniques Suppl:45–51

    Google Scholar 

  64. Vermeesch JR, Brady PD, Sanlaville D et al (2012) Genome-wide arrays: quality criteria and platforms to be used in routine diagnostics. Hum Mutat 33:906–915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the University of Leuven (KU Leuven), SymBioSys (PFV/10/016) and GOA/12/015 as well as Belgian Science Policy Office Interuniversity Attraction Poles (BELSPO-IAP) program through the project IAP P7/43-BeMGI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris R. Vermeesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Dimitriadou, E., Vermeesch, J.R. (2017). Array CGH. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics