Skip to main content

The Replicative Detargeting FISH (ReD-FISH) Technique in Studies of Telomere Replication

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Based on the chromosome orientation-FISH (CO-FISH) procedure, the replicative detargeting FISH (ReD-FISH) was developed as a unique tool to study the replicative patterns of telomeres located on individual chromosomal arms. This method is also suited for examination of telomeres of species belonging to different classes of animals, for which well-proliferated cell cultures can be established and maintained. ReD-FISH is based on pulsed inclusion of labeled brominated nucleotides in replicating DNA, destruction of regions with brominated analogs, and standard FISH with single-strand-specific probe/probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwin E, Meyne J (1993) Strand‐specific FISH reveals orientation of chromosome 18 alphoid DNA. Cytogenet Cell Genet 63:126–127

    Article  CAS  PubMed  Google Scholar 

  2. Bailey SM, Goodwin EH, Cornforth MN (2004) Strand‐specific fluorescence in situ hybridization: the CO-FISH family. Cytogenet Genome Res 107:14–17

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen PE, Egholm M, Berg RH et al (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  4. Tomac S, Sarkar M, Ratilainen T et al (1996) Ionic effects on the stability and conformation of peptide nucleic acid (PNA) complexes. J Am Chem Soc 118:5544–5552

    Article  CAS  Google Scholar 

  5. Weiler J, Gausepohl H, Hauser N et al (1997) Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Res 25:2792–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Silahtaroglu AN, Tommerup N, Vissing H (2003) FISHing with locked nucleic acids (LNA): evaluation of different LNA/DNA mixmers. Mol Cell Probes 17:165–169

    Article  CAS  PubMed  Google Scholar 

  7. Zou Y, Gryaznov SM, Shay JW et al (2004) Asynchronous replication timing of telomeres at opposite arms of mammalian chromosomes. Proc Natl Acad Sci U S A 101:12928–12933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chai W, Shay JW, Wright WE (2005) Human telomeres maintain their overhang length at senescence. Mol Cell Biol 25:2158–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666

    Article  CAS  PubMed  Google Scholar 

  10. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  Google Scholar 

  11. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    Article  CAS  PubMed  Google Scholar 

  12. Riethman H (2008) Human telomere structure and biology. Annu Rev Genomics Hum Genet 9:1–19

    Article  CAS  PubMed  Google Scholar 

  13. Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239:197–201

    Article  CAS  PubMed  Google Scholar 

  14. Olovnikov AM (1973) A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    Article  CAS  PubMed  Google Scholar 

  15. Gilson E, Géli V (2007) How telomeres are replicated. Nat Rev Mol Cell Biol 10:825–838

    Article  Google Scholar 

  16. Wellinger RJ, Wolf AJ, Zakian VA (1993) Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid. Mol Cell Biol 13:4057–4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raghuraman MK, Winzeler EA, Collingwood D et al (2001) Replication dynamics of the yeast genome. Science 294:115–121

    Article  CAS  PubMed  Google Scholar 

  18. Lee C, Sasi R, Lin CC (1993) Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. Cytogenet Cell Genet 63:156–159

    Article  CAS  PubMed  Google Scholar 

  19. Arnoult N, Schluth-Bolard C, Letessier A et al (2010) Replication timing of human telomeres is chromosome arm-specific, influenced by subtelomeric structures and connected to nuclear localization. PLoS Genet 6, e1000920

    Article  PubMed  PubMed Central  Google Scholar 

  20. Londoño-Vallejo JA, Der-Sarkissian H, Cazes L et al (2004) Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res 64:2324–2327

    Article  PubMed  Google Scholar 

  21. Zhdanova NS, Draskovic I, Minina JM et al (2014) Recombinogenic telomeres in diploid Sorex granarius (Soricidae, Eulipotyphla) fibroblast cells. Mol Cell Biol 34:2786–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sfeir A, Kosiyatrakul ST, Hockemeyer D et al (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Drosopoulos WC, Kosiyatrakul ST, Yan Z et al (2012) Human telomeres replicate using chromosome-specific, rather than universal, replication programs. J Cell Biol 197:253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the budget project VI.53.1.4. of the Federal Research Center Institute of Cytology and Genetics of SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Rubtsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Rubtsov, N., Zhdanova, N. (2017). The Replicative Detargeting FISH (ReD-FISH) Technique in Studies of Telomere Replication. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics