Skip to main content

Genetic Fingerprinting Techniques for Molecular Characterisation of Microbes

  • Protocol
  • First Online:
Analyzing Microbes

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

DNA fingerprints are commonly generated for a genetic characterisation of microbial populations or communities. The respective techniques are based either on hybridisation or on polymerase chain reaction (PCR). We present an overview and detailed protocols of the most frequently DNA fingerprinting techniques currently used in microbial ecology, including isolation of respective target sequences, set-ups of PCR reactions, and ways of detecting markers for generating fingerprints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21

    Article  PubMed  CAS  Google Scholar 

  2. White TJ, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  3. Zinger L, Gury J, Alibeu O et al (2008) CE-SSCP and CE-FLA, simple and high-throughput alternatives for fungal diversity studies. J Microbiol Methods 72:42–53

    Article  PubMed  CAS  Google Scholar 

  4. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330

    PubMed  CAS  Google Scholar 

  5. Devi KU, Reineke A, Rao UC et al (2007) AFLP and single-strand conformation polymorphism studies of recombination in the entomopathogenic fungus Nomuraea rileyi. Mycol Res 111:716–725

    Article  PubMed  CAS  Google Scholar 

  6. Weisburg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  7. Sun L, Qiu F, Zhang X et al (2007) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  PubMed  Google Scholar 

  8. Medlin L, Elwood HJ, Stickel S et al (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Article  PubMed  CAS  Google Scholar 

  9. Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    Article  PubMed  CAS  Google Scholar 

  10. Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360

    Article  PubMed  CAS  Google Scholar 

  11. Edel-Hermann W, Dreumont C, Perez-Piqueres A et al (2004) Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol Ecol 47:397–404

    Article  PubMed  CAS  Google Scholar 

  12. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, West Sussex, pp 115–175

    Google Scholar 

  13. Dees PM, Ghiorse WC (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35:207–216

    Article  PubMed  CAS  Google Scholar 

  14. Schütte UME, Abdo Z, Bent SJ et al (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380

    Article  PubMed  Google Scholar 

  15. Gothwal RK, Nigam VK, Mohan MK et al (2007) Extraction of bulk DNA from Thar Desert soils for optimization of PCR-DGGE based microbial community analysis. Electron J Biotechnol 10:400–408

    Article  CAS  Google Scholar 

  16. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  17. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  18. Williams JGK, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  19. Meunier JR, Grimont PAD (1993) Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res Microbiol 144:373–379

    Article  PubMed  CAS  Google Scholar 

  20. Muralidharan K, Wakeland EK (1993) Concentration of primer and template qualitatively affects products in random-amplified polymorphic DNA PCR. Biotechniques 14:362–364

    PubMed  CAS  Google Scholar 

  21. Schierwater B, Ender A (1993) Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res 21:4647–4648

    Article  PubMed  CAS  Google Scholar 

  22. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  23. Meudt HM, Clark AC (2006) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  Google Scholar 

  24. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  PubMed  Google Scholar 

  25. Savelkoul PHM, Aarts HJM, de Haas J et al (1999) Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol 37:3083–3091

    PubMed  CAS  Google Scholar 

  26. Goldstein DB, Schlötterer C (1999) Microsatellites: evolution and applications. Oxford University Press, Oxford

    Google Scholar 

  27. MacGregor BJ, Amann R (2006) Single-stranded conformational polymorphism for separation of mixed rRNAs (rRNA-SSCP), a new method for profiling microbial communities. Syst Appl Microbiol 29:661–670

    Article  PubMed  CAS  Google Scholar 

  28. Oto M, Suda W, Shinoyama H (2006) 16S rRNA gene-based analysis of microbial community by whole-genome amplification and minigel-single-strand conformation polymorphism technique. J Biosci Bioeng 102:482–484

    Article  PubMed  CAS  Google Scholar 

  29. Sunnucks P, Wilson ACC, Beheregaray LB et al (2000) SSCP is not so difficult: the application and utility of single-strand conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol 9:1699–1710

    Article  PubMed  CAS  Google Scholar 

  30. Zinger L, Gury J, Giraud F et al (2007) Improvements of polymerase chain reaction and capillary electrophoresis single-strand conformation polymorphism methods in microbial ecology: toward a high-throughput method for microbial diversity studies in soil. Microb Ecol 54:203–216

    Article  PubMed  CAS  Google Scholar 

  31. Gich FB, Amer E, Figueras JB et al (2000) Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis ARDRA. Int Microbiol 3:103–106

    PubMed  CAS  Google Scholar 

  32. Wu XY, Walker MJ, Hornitzky M et al (2006) Development of a group-specific PCR combined with ARDRA for the identification of Bacillus species of environmental significance. J Microbiol Methods 64:107–119

    Article  PubMed  CAS  Google Scholar 

  33. Liu WT, Marsh TL, Cheng H et al (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  34. de Souza FA, Kowalchuk GA, Leeflang P et al (2004) PCR-denaturing gradient gel electrophoresis profiling of inter- and intraspecies 18S rRNA gene sequence heterogeneity is an accurate and sensitive method to assess species diversity of arbuscular mycorrhizal fungi of the genus Gigaspora. Appl Environ Microbiol 70:1413–1424

    Article  PubMed  Google Scholar 

  35. Etscheid M, Riesner D (1998) TGGE and DGGE. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity: plants and animals. Chapman and Hall, London, pp 135–151

    Chapter  Google Scholar 

  36. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, vol 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  37. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  PubMed  CAS  Google Scholar 

  38. Hamilton MB, Pincus EL, Di Fiore A et al (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507

    PubMed  CAS  Google Scholar 

  39. Nunome T, Negoro S, Miyatake K et al (2006) Protocol for the construction of microsatellite enriched genomic library. Plant Mol Biol Rep 24:305–312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Reineke, A., Devi, K.U. (2013). Genetic Fingerprinting Techniques for Molecular Characterisation of Microbes. In: Arora, D., Das, S., Sukumar, M. (eds) Analyzing Microbes. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34410-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34410-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34409-1

  • Online ISBN: 978-3-642-34410-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics