BAC Transgenes, DNA Purification, and Transgenic Mouse Production

  • Michael G. Zeidler
  • Margaret L. Van Keuren
  • Thomas L. Saunders
Part of the Springer Protocols Handbooks book series (SPH)


Transgenic mouse models open new avenues of research to understand gene function, to mark cells, and to model human genetic diseases. The use of large DNA transgenes provides more information to cells and tissues in the mouse so that gene expression occurs at physiological levels in the appropriate cell types while recapitulating normal developmental time frames. Genomic libraries prepared in bacterial artificial chromosomes (BACs) for the mouse and human genome sequencing projects are a ready source of large DNA transgenes. The use of recombineering technology to modify BAC clones for (1) expression of proteins resulting from point mutations, (2) marking of specific cell populations with fluorescent protein reporters, or (3) cell-specific expression of exogenous proteins that can be used to control inducible gene expression and enhance the utility of BAC transgene-based experimental models. Large BAC transgenes and small plasmid transgenes are used to produce transgenic founder mice by the microinjection of purified DNA into the pronuclei of fertilized mouse eggs in both cases. Despite this similarity, the application of small DNA injection methods to large DNA transgenes leads to the integration of DNA fragments instead of intact BAC transgenes. Important technical differences between small and large DNA transgenesis include differences in DNA purification, microinjection buffers, and genotyping strategies to detect genomic integration. Careful attention to detail results in rewarding mouse models that can be used to identify disease-causing mutations in spontaneous mouse mutants, to purify rare cells that express fluorescent markers, and to explore genetic elements that control gene expression.



Bacterial Artificial Chromosome


Base pair


Children’s Hospital Oakland Research Institute


National Center for Biotechnology Information


New England Biolabs




Pulsed Field Gel Electrophoresis




Sequence Search and Alignment by Hashing Algorithm


University of California Santa Cruz


  1. 1.
    Giraldo P, Montoliu L (2001) Size matters: use of YACs. BACs and PACs in transgenic animals. Transgenic Res 2001(10):83–103CrossRefGoogle Scholar
  2. 2.
    Osoegawa K, Tateno M, Woon PY, Frengen E, Mammoser AG, Catanese JJ, Hayashizaki Y, de Jong PJ (2000) Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res 10:116–128PubMedGoogle Scholar
  3. 3.
    Osoegawa K, Mammoser AG, Wu C, Frengen E, Zeng C, Catanese JJ, de Jong PJ (2001) A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res 11:483–496PubMedCrossRefGoogle Scholar
  4. 4.
    Corpening JC, Cantrell VA, Deal KK, Southard-Smith EM (2008) A Histone2BCerulean BAC transgene identifies differential expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev Dyn 237:1119–1132PubMedCrossRefGoogle Scholar
  5. 5.
    Nielsen LB, McCormick SP, Pierotti V, Tam C, Gunn MD, Shizuya H, Young SG (1997) Human apolipoprotein B transgenic mice generated with 207- and 145-kilobase pair bacterial artificial chromosomes. Evidence that a distant 5′-element confers appropriate transgene expression in the intestine. J Biol Chem 272:29752–29758PubMedCrossRefGoogle Scholar
  6. 6.
    Deal KK, Cantrell VA, Chandler RL, Saunders TL, Mortlock DP, Southard-Smith EM (2006) Distant regulatory elements in a Sox10-beta GEO BAC transgene are required for expression of Sox10 in the enteric nervous system and other neural crest-derived tissues. Dev Dyn 235:1413–1432PubMedCrossRefGoogle Scholar
  7. 7.
    Dunnick WA, Shi J, Graves KA, Collins JT (2005) The 3′ end of the heavy chain constant region locus enhances germline transcription and switch recombination of the four gamma genes. J Exp Med 201:1459–1466PubMedCrossRefGoogle Scholar
  8. 8.
    Xing L, Salas M, Lin CS, Zigman W, Silverman W, Subramaniyam S, Murty VV, Tycko B (2007) Faithful tissue-specific expression of the human chromosome 21-linked COL6A1 gene in BAC-transgenic mice. Mamm Genome 18:113–122PubMedCrossRefGoogle Scholar
  9. 9.
    Haldi ML, Strickland C, Lim P, VanBerkel V, Chen X, Noya D, Korenberg JR, Husain Z, Miller J, Lander ES (1996) A comprehensive large-insert yeast artificial chromosome library for physical mapping of the mouse genome. Mamm Genome 7:767–769PubMedCrossRefGoogle Scholar
  10. 10.
    Moreira PN, Pérez-Crespo M, Ramírez MA, Pozueta J, Montoliu L, Gutiérrez-Adán A (2007) Effect of transgene concentration, flanking matrix attachment regions, and RecA-coating on the efficiency of mouse transgenesis mediated by intracytoplasmic sperm injection. Biol Reprod 76:336–343PubMedCrossRefGoogle Scholar
  11. 11.
    Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Songoram AM, King DP, Pinto LH, Takahashi JS (1997) Functional identification of the Mouse circadian clock gene by transgenic BAC rescue. Cell 89:655–667PubMedCrossRefGoogle Scholar
  12. 12.
    Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, Morell RJ, Touchman JW, Lyons RH, Noben-Trauth K, Friedman TB, Camper SA (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–1447PubMedCrossRefGoogle Scholar
  13. 13.
    Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15:859–865PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128PubMedCrossRefGoogle Scholar
  15. 15.
    Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779PubMedCrossRefGoogle Scholar
  16. 16.
    Valjent E, Bertran-Gonzalez J, Herve D, Fisone G, Girault JA (2009) Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci 32:538–547PubMedCrossRefGoogle Scholar
  17. 17.
    Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925PubMedCrossRefGoogle Scholar
  18. 18.
    Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128:9–13PubMedCrossRefGoogle Scholar
  19. 19.
    Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J, Chernomorsky R, Boucher M, Elsasser AL, Esau L, Zheng J, Griffiths JA, Wang X, Su H, Xue Y, Dominguez MG, Noguera I, Torres R, Macdonald LE, Stewart AF, DeChiara TM, Yancopoulos GD (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659PubMedCrossRefGoogle Scholar
  20. 20.
    Mensah-Osman E, Labut E, Zavros Y, El-Zaatari M, Law DJ, Merchant JL (2008) Regulated expression of the human gastrin gene in mice. Regul Pept 151:115–122PubMedCrossRefGoogle Scholar
  21. 21.
    Ranatunga D, Hedrich CM, Wang F, McVicar DW, Nowak N, Joshi T, Feigenbaum L, Grant LR, Stäger S, Bream JH (2009) A human IL10 BAC transgene reveals tissue-specific control of IL-10 expression and alters disease outcome. Proc Natl Acad Sci USA 106:17123–17128PubMedCrossRefGoogle Scholar
  22. 22.
    Sarsero JP, Li L, Holloway TP, Voullaire L, Gazeas S, Fowler KJ, Kirby DM, Thorburn DR, Galle A, Cheema S, Koenig M, Williamson R, Ioannou PA (2004) Human BAC-mediated rescue of the Friedreich ataxia knockout mutation in transgenic mice. Mamm Genome 15:370–382PubMedCrossRefGoogle Scholar
  23. 23.
    Zeng C, Kouprina N, Zhu B, Cairo A, Hoek M, Cross G, Osoegawa K, Larionov V, de Jong P (2001) Large-insert BAC/YAC libraries for selective re-isolation of genomic regions by homologous recombination in yeast. Genomics 77:27–34PubMedCrossRefGoogle Scholar
  24. 24.
    Van Keuren ML, Gavrilina GB, Filipiak WE, Zeidler MG, Saunders TL (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res 18:769–785PubMedCrossRefGoogle Scholar
  25. 25.
    Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482:123–141PubMedCrossRefGoogle Scholar
  26. 26.
    Abe K, Hazama M, Katoh H, Yamamura K, Suzuki M (2004) Establishment of an efficient BAC transgenesis protocol and its application to functional characterization of the mouse Brachyury locus. Exp Anim 53:311–320PubMedCrossRefGoogle Scholar
  27. 27.
    Schedl A, Larin Z, Montoliu L, Thies E, Kelsey G, Lehrach H, Schutz G (1993) A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res 21:4783–4787PubMedCrossRefGoogle Scholar
  28. 28.
    Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 82:4438–4442PubMedCrossRefGoogle Scholar
  29. 29.
    Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z, Davies E, Hajnóczky G, Saunders TL, Van Keuren ML, Fernandes-Alnemri T, Meisler MH, Alnemri ES (2003) Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425:721–727PubMedCrossRefGoogle Scholar
  30. 30.
    Montoliu L, Bock CT, Schütz G, Zentgraf H (1995) Visualization of large DNA molecules by electron microscopy with polyamines: application to the analysis of yeast endogenous and artificial chromosomes. J Mol Biol 246:486–492PubMedCrossRefGoogle Scholar
  31. 31.
    Oliver ER, Saunders TL, Tarle SA, Glaser T (2004) Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse Minute. Development 131:3907–3920PubMedCrossRefGoogle Scholar
  32. 32.
    Brandt W, Khandekar M, Suzuki N, Yamamoto M, Lim K-C, Douglas Engel J (2008) Defining the Functional Boundaries of the Gata2 Locus by Rescue with a Linked Bacterial Artificial Chromosome Transgene. J Biol Chem. 283(14):8976–8983. doi: 10.1074/jbc.M709364200Google Scholar
  33. 33.
    Margaret L. Van Keuren, Galina B. Gavrilina, Wanda E. Filipiak, Michael G. Zeidler, Thomas L. Saunders (2009) Generating Transgenic Mice from Bacterial Artificial Chromosomes: Transgenesis Efficiency, Integration and Expression Outcomes. Transgenic Res. Author manuscript; available in PMC 2011 January 5. Published in final edited form as: Transgenic Res. October; 18(5):769–785. Published online 2009 April 26. doi: 10.1007/s11248-009-9271-2Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael G. Zeidler
    • 1
  • Margaret L. Van Keuren
    • 2
  • Thomas L. Saunders
    • 3
    • 4
  1. 1.Transgenic Animal Model CoreUniversity of Michigan, Medical SchoolAnn ArborUSA
  2. 2.Transgenic Animal Model CoreUniversity of Michigan, Medical SchoolAnn ArborUSA
  3. 3.Transgenic Animal Model CoreUniversity of Michigan, Medical SchoolAnn ArborUSA
  4. 4.Division of Molecular Medicine and Genetics, Department of Internal MedicineUniversity of Michigan, Medical SchoolAnn ArborUSA

Personalised recommendations