Gene Targeting Vector Design for Embryonic Stem Cell Modifications

Part of the Springer Protocols Handbooks book series (SPH)


The use of genetically engineered mice to understand gene function is widespread. Changes to the mouse genome can be introduced with gene targeting vectors or with transgenes. Targeting vectors are usually used to ablate gene expression while transgenes are designed to express proteins that are normally absent from the organism. For example, gene targeting in mouse embryonic stem cells can be used to generate a mutant mouse model that fails to express a physiologically important protein. Transgenes that express the missing protein or a substitute for the missing protein can be used to assess possible gene therapies for the mutant mouse. Both gene targeting and transgene approaches can be used to study regulatory elements that control gene function. Putative control elements can be added to or removed from the chromosome with targeting vectors. Transgenes carrying long DNA sequences that include different combinations of potential control elements can be introduced into the genome to assess their effects on gene expression. The exploration of how genes interact to control development, homeostasis, and pathophysiological conditions can be dissected by introducing carefully designed genetic constructs into model organisms.



Bacterial artificial chromosome

ES cell

Embryonic stem cell


International Mouse Knockout Consortium


Kilo base pairs of DNA


DNA cassette featuring neomycin phosphotransferase II expression controlled by the phosphoglycerol kinase 1 promoter/enhancer


Zinc finger nuclease


  1. 1.
    Tybulewicz VLJ, Crawford CE, Jackson PK, Bronson PT, Mulligan RC (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153–1163PubMedCrossRefGoogle Scholar
  2. 2.
    Zijlstra M, Li E, Sajjadi F, Subramani S, Jaenisch R (1989) Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342(6248):435–438PubMedCrossRefGoogle Scholar
  3. 3.
    Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265(5168):103–106PubMedCrossRefGoogle Scholar
  4. 4.
    Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89(15):6861–6865PubMedCrossRefGoogle Scholar
  5. 5.
    Kühn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429PubMedCrossRefGoogle Scholar
  6. 6.
    Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93:10887–10890PubMedCrossRefGoogle Scholar
  7. 7.
    Furth PA, St Onge L, Böger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci USA 91:9302–9306PubMedCrossRefGoogle Scholar
  8. 8.
    Nagy A, Moens C, Ivanyi E, Pawling J, Gertsenstein M, Hadjantonakis AK, Pirity M, Rossant J (1998) Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr Biol 8:661–664PubMedCrossRefGoogle Scholar
  9. 9.
    Le Mouellic H, Lallemand Y, Brûlet P (1992) Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 69:251–264PubMedCrossRefGoogle Scholar
  10. 10.
    Ikawa M, Kominami K, Yoshimura Y, Tanaka K, Nishimune Y, Okabe M (1995) A rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP). FEBS Lett 375:125–128PubMedCrossRefGoogle Scholar
  11. 11.
    Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62PubMedCrossRefGoogle Scholar
  12. 12.
    Cretekos CJ, Wang Y, Green ED, Martin JF, Rasweiler JJ 4th, Behringer RR (2008) Regulatory divergence modifies limb length between mammals. Genes Dev 22:141–151PubMedCrossRefGoogle Scholar
  13. 13.
    Hanks MC, Loomis CA, Harris E, Tong CX, Anson-Cartwright L, Auerbach A, Joyner A (1998) Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development. Development 125:4521–4530PubMedGoogle Scholar
  14. 14.
    Zou YR, Gu H, Rajewsky K (1993) Generation of a mouse strain that produces immunoglobulin kappa chains with human constant regions. Science 262:1271–1274PubMedCrossRefGoogle Scholar
  15. 15.
    Schnütgen F, De-Zolt S, Van Sloun P, Hollatz M, Floss T, Hansen J, Altschmied J, Seisenberger C, Ghyselinck NB, Ruiz P, Chambon P, Wurst W, von Melchner H (2005) Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc Natl Acad Sci USA 102:7221–7226PubMedCrossRefGoogle Scholar
  16. 16.
    Anastassiadis K, Fu J, Patsch C, Hu S, Weidlich S, Duerschke K, Buchholz F, Edenhofer F, Stewart AF (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2:508–515PubMedCrossRefGoogle Scholar
  17. 17.
    Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2:e162PubMedCrossRefGoogle Scholar
  18. 18.
    Osterwalder M, Galli A, Rosen B, Skarnes WC, Zeller R, Lopez-Rios J (2010) Dual RMCE for efficient re-engineering of mouse mutant alleles. Nat Methods. doi:10.1038/nmeth.1521 PubMedGoogle Scholar
  19. 19.
    Singla V, Hunkapiller J, Santos N, Seol AD, Norman AR, Wakenight P, Skarnes WC, Reiter JF (2010) Floxin, a resource for genetically engineering mouse ESCs. Nat Methods 7:50–52PubMedCrossRefGoogle Scholar
  20. 20.
    Araki K, Araki M, Miyazaki J-I, Vassalli P (1995) Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc Natl Acad Sci USA 92:160–164PubMedCrossRefGoogle Scholar
  21. 21.
    Schaft J, Ashery Padan R, van der Hoeven F, Gruss P, Stewart AF (2001) Efficient FLP recombination in mouse ES cells and oocytes. Genesis 31:6–10PubMedCrossRefGoogle Scholar
  22. 22.
    te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci USA 89:5128–5132CrossRefGoogle Scholar
  23. 23.
    van Deursen J, Wieringa B (1992) Targeting of the creatine kinase M gene in embryonic stem cells using isogenic and nonisogenic vectors. Nucleic Acids Res 20:3815–3820PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou L, Rowley DL, Mi QS, Sefcovic N, Matthes HW, Kieffer BL, Donovan DM (2001) Murine inter-strain polymorphisms alter gene targeting frequencies at the mu opioid receptor locus in embryonic stem cells. Mamm Genome 12:772–778PubMedCrossRefGoogle Scholar
  25. 25.
    Hasty P, Abuin A, Bradley A (2000) Gene targeting, principles, and practice in mammalian cells. In: Joyner AL (ed) Gene targeting: a practical approach, 2nd edn. Oxford University Press, London, pp 1–35Google Scholar
  26. 26.
    Friedel RH, Plump A, Lu X, Spilker K, Jolicoeur C, Wong K, Venkatesh TR, Yaron A, Hynes M, Chen B, Okada A, McConnell SK, Rayburn H, Tessier-Lavigne M (2005) Gene targeting using a promoterless gene trap vector (“targeted trapping”) is an efficient method to mutate a large fraction of genes. Proc Natl Acad Sci USA 102:13188–13193PubMedCrossRefGoogle Scholar
  27. 27.
    George SH, Gertsenstein M, Vintersten K, Korets-Smith E, Murphy J, Stevens ME, Haigh JJ, Nagy A (2007) Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc Natl Acad Sci USA 104:4455–4460PubMedCrossRefGoogle Scholar
  28. 28.
    Ioffe E, Liu Y, Bhaumik M, Poirier F, Factor SM, Stanley P (1995) WW6: an embryonic stem cell line with an inert genetic marker that can be traced in chimeras. Proc Natl Acad Sci USA 92:7357–7361PubMedCrossRefGoogle Scholar
  29. 29.
    Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, Dore’ AT, Stevens S, Adams NC, Dominguez MG, Gale NW, Yancopoulos GD, DeChiara TM, Valenzuela DM (2007) Nat Biotechnol 25:91–99PubMedCrossRefGoogle Scholar
  30. 30.
    Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J, Chernomorsky R, Boucher M, Elsasser AL, Esau L, Zheng J, Griffiths JA, Wang X, Su H, Xue Y, Dominguez MG, Noguera I, Torres R, Macdonald LE, Stewart AF, DeChiara TM, Yancopoulos GD (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512PubMedCrossRefGoogle Scholar
  32. 32.
    Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp- mediated recombination. Nat Genet 18:136–141PubMedCrossRefGoogle Scholar
  33. 33.
    Jacks T, Shih TS, Scmitt EA, Bronson RT, Bernards A, Weinberg RA (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7:353–361PubMedCrossRefGoogle Scholar
  34. 34.
    Scacheri PC, Crabtree JS, Novotny EA, Garrett-Beal L, Chen A, Edgemon KA, Marx SJ, Spiegel AM, Chandrasekharappa SC, Collins FS (2001) Bidirectional transcriptional activity of PGK-neomycin and unexpected embryonic lethality in heterozygote chimeric knockout mice. Genesis 30:259–263PubMedCrossRefGoogle Scholar
  35. 35.
    Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, Lorang D, Libutti SK, Chandrasekharappa SC, Marx SJ, Spiegel AM, Collins FS (2001) A mouse model of multiple endocrine neoplasia, type1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 98:1118–1123PubMedCrossRefGoogle Scholar
  36. 36.
    Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, Marth JD, Parada LF (2001) Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 15:859–876PubMedCrossRefGoogle Scholar
  37. 37.
    Shavit JA, Motohashi H, Onodera K, Akasaka J, Yamamoto M, Engel JD (1998) Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice. Genes Dev 12:2164–2174PubMedCrossRefGoogle Scholar
  38. 38.
    Hedges SJ, Deininger PL (2007) Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616:46–59PubMedCrossRefGoogle Scholar
  39. 39.
    Horie K, Saito ES, Keng VW, Ikeda R, Ishihara H, Takeda J (2007) Retrotransposons influence the mouse transcriptome: implication for the divergence of genetic traits. Genetics 176:815–827PubMedCrossRefGoogle Scholar
  40. 40.
    Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727PubMedCrossRefGoogle Scholar
  41. 41.
    Kang YK, Park JS, Lee CS, Yeom YI, Chung AS, Lee KK (1999) Efficient integration of short interspersed element-flanked foreign DNA via homologous recombination. J Biol Chem 274:36585–36591PubMedCrossRefGoogle Scholar
  42. 42.
    Konkel MK, Batzer MA (2010) A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 20:211–221PubMedCrossRefGoogle Scholar
  43. 43.
    McVean G (2010) What drives recombination hotspots to repeat DNA in humans? Philos Trans R Soc Lond B Biol Sci 365:1213–1218PubMedCrossRefGoogle Scholar
  44. 44.
    Yagi T, Ikawa Y, Yoshida K, Shigetani Y, Takeda N, Mabuchi I, Yamamoto T, Aizawa S (1990) Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci USA 87:9918–9922PubMedCrossRefGoogle Scholar
  45. 45.
    Skarnes WC (2005) Two ways to trap a gene in mice. Proc Natl Acad Sci USA 89:5128–5132Google Scholar
  46. 46.
    Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Site specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 21:321–324PubMedCrossRefGoogle Scholar
  47. 47.
    Kranz A, Fu J, Duerschke K, Weidlich S, Naumann R, Stewart AF, Anastassiadis K (2010) An improved Flp deleter mouse in C57BL/6 based on Flpo recombinase. Genesis 48:512–520PubMedCrossRefGoogle Scholar
  48. 48.
    Ohtsuka M, Ogiwara S, Miura H, Mizutani A, Warita T, Sato M, Imai K, Hozumi K, Sato T, Tanaka M, Kimura M, Inoko H (2010) Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression. Nucleic Acids Res 38:e198PubMedCrossRefGoogle Scholar
  49. 49.
    Surzycki S (2000) Basic techniques in molecular biology. Springer, BerlinCrossRefGoogle Scholar
  50. 50.
    Johansson T, Broll I, Frenz T, Hemmers S, Becher B, Zeilhofer HU, Buch T (2010) Building a zoo of mice for genetic analyses: a comprehensive protocol for the rapid generation of BAC transgenic mice. Genesis 48:264–280PubMedCrossRefGoogle Scholar
  51. 51.
    Gong S, Kus L, Heintz N (2010) Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis. Nat Protoc 10:1678–1696CrossRefGoogle Scholar
  52. 52.
    Boffelli D, Nobrega MA, Rubin EM (2004) Comparative genomics at the vertebrate extremes. Nat Rev Genet 5:456–465PubMedCrossRefGoogle Scholar
  53. 53.
    Baker KE, Parker R (2004) Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr Opin Cell Biol 16:293–299PubMedCrossRefGoogle Scholar
  54. 54.
    Joyner AL, Skarnes WC, Rossant J (1989) Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells. Nature 338:153–156PubMedCrossRefGoogle Scholar
  55. 55.
    McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085PubMedCrossRefGoogle Scholar
  56. 56.
    Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30:503–512PubMedCrossRefGoogle Scholar
  57. 57.
    Soliman GA, Ishida-Takahashi R, Gong Y, Jones JC, Leshan RL, Saunders TL, Fingar DC, Myers MG Jr (2007) A simple qPCR-based method to detect correct insertion of homologous targeting vectors in murine ES cells. Transgenic Res 16:665–670PubMedCrossRefGoogle Scholar
  58. 58.
    Friedel RH, Seisenberger C, Kaloff C, Wurst W (2007) EUCOMM–the European conditional mouse mutagenesis program. Brief Funct Genomic Proteomic 6:180–185PubMedCrossRefGoogle Scholar
  59. 59.
    Chan W, Costantino N, Li R, Lee SC, Su Q, Melvin D, Court DL, Liu P (2007) A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res 35:e64PubMedCrossRefGoogle Scholar
  60. 60.
    Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WW, Chambers I, Smith AJ, Smith AG, Stewart AF (2003) Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 21:443–447PubMedCrossRefGoogle Scholar
  61. 61.
    Saunders TL (2010) A survey of internet resources for mouse development. Meth Enzymol 476:3–21PubMedCrossRefGoogle Scholar
  62. 62.
    Eitzman DT, Westrick RJ, Shen Y, Bodary PF, Gu S, Manning SL, Dobies SL, Ginsburg D (2005) Homozygosity for factor V Leiden leads to enhanced thrombosis and atherosclerosis in mice. Circulation 111:1822–1825PubMedCrossRefGoogle Scholar
  63. 63.
    Huang X, Fu Y, Charbeneau RA, Neubig RR (2009) GNAI2 and regulators of G protein signaling as a potential Noonan syndrome mechanism. Med Hypotheses 73:56–59PubMedCrossRefGoogle Scholar
  64. 64.
    Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G (2009) The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 16:1590–1598PubMedCrossRefGoogle Scholar
  65. 65.
    Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM, Pennacchio LA (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464:409–412PubMedCrossRefGoogle Scholar
  66. 66.
    Olson LE, Richtsmeier JT, Leszl J, Reeves RH (2004) A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 306:687–690PubMedCrossRefGoogle Scholar
  67. 67.
    Tybulewicz VL, Fisher EM (2006) New techniques to understand chromosome dosage: mouse models of aneuploidy. Hum Mol Genet 15 Spec No 2:R103–R109Google Scholar
  68. 68.
    Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186:451–459PubMedCrossRefGoogle Scholar
  69. 69.
    Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67PubMedCrossRefGoogle Scholar
  70. 70.
    Meyer M, de Angelis MH, Wurst W, Kühn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA 107:15022–15026PubMedCrossRefGoogle Scholar
  71. 71.
    Swiatek PJ, Gridley T (1993) Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev 7:2071–2084PubMedCrossRefGoogle Scholar
  72. 72.
    Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood island and myocardium. J Embryol Exp Morph 87:27–45PubMedGoogle Scholar
  73. 73.
    Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295PubMedCrossRefGoogle Scholar
  74. 74.
    Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926PubMedCrossRefGoogle Scholar
  75. 75.
    Pettitt SJ, Liang Qu, Rairdan XY, Moran JL, Prosser HM, Beier DR, Lloyd KC, Bradley A, Skarnes WC (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods 6:493–495PubMedCrossRefGoogle Scholar
  76. 76.
    Domino SE, Zhang L, Gillespie PJ, Saunders TL, Lowe JB (2001) Deficiency of reproductive tract (1,2)fucosylated glycans and normal fertility in mice with targeted deletions of the FUT1 or FUT2 (1,2)fucosyltransferase locus. Mol Cell Biol 21:8336–8345PubMedCrossRefGoogle Scholar
  77. 77.
    Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921PubMedCrossRefGoogle Scholar
  78. 78.
    Vetter K (2000) Die Funktion von FGF2 und FGF8 während der Entwicklung des Nervensystems in der Maus. Doctoral dissertation, University of Technology, MunichGoogle Scholar
  79. 79.
    Rideout WM 3rd, Wakayama T, Wutz A, Eggan K, Jackson-Grusby L, Dausman J, Yanagimachi R, Jaenisch R (2000) Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 24:109–110PubMedCrossRefGoogle Scholar
  80. 80.
    Auerbach W, Dunmore JH, Fairchild-Huntress V, Fang Q, Auerbach AB, Huszar D, Joyner AL (2000) Establishment and chimera analysis of 129/ SvEv- and C57BL/6-derived mouse embryonic stem cell lines. Biotechniques 29:1024–1032PubMedGoogle Scholar
  81. 81.
    Araki K, Imaizumi T, Sekimoto T, Yoshinobu K, Yoshimuta J, Akizuki M, Miura K, Araki M, Yamamura K (1999) Exchangeable gene trap using the Cre/mutated lox system. Cell Mol Biol 45:737–750PubMedGoogle Scholar
  82. 82.
    Cheah SS, Behringer RR (2001) Contemporary gene targeting strategies for the novice. Mol Biotechnol 19:297–304PubMedCrossRefGoogle Scholar
  83. 83.
    Hughes ED, Qu YY, Genilk SJ, Lyons RH, Pacheco CD, Lieberman AP, Samuelson LC, Nasonkin IO, Camper SA, Van Keuren ML, Saunders TL (2007) Genetic variation in C57BL/6 ES cell line. Mamm Genome 18:549–558Google Scholar
  84. 84.
    Kendall SK, Samuelson LC, Saunders TL, Wood RI, Camper SA (1995) Targeted disruption of the pituitary glycoprotein hormone alpha-subunit produces hypogonadal and hypothyroid mice. Genes Dev 9:2007–2019PubMedCrossRefGoogle Scholar
  85. 85.
    Martin MS, Dutt K, Papale LA, Dubé CM, Dutton SB, de Haan G, Shankar A, Tufik S, Meisler MH, Baram TZ, Goldin AL, Escayg A (2010) Altered function of the SCN1A voltage-gated sodium channel leads to gamma-aminobutyric acid-ergic (GABAergic) interneuron abnormalities. J Biol Chem 285:9823–9834PubMedCrossRefGoogle Scholar
  86. 86.
    Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24:1173–1185PubMedCrossRefGoogle Scholar
  87. 87.
    Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage stem cells. Proc. Natl. Acad. Sci. U.S.A. 90:8424–8428Google Scholar
  88. 88.
    Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ. 1997. Genetic variation among 129 substrains and its importance for targeted mutageneeis in mice. Nat. Genet 16:19–27Google Scholar
  89. 89.
    Szabó P, Mann JR (1994) Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 120:1651–1660PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Transgenic Animal Model CoreUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Division of Molecular Medicine and Genetics, Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations