Skip to main content

Global Resources: Including Gene Trapped ES Cell Clones - Is Your Gene Already Knocked Out?

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The design of any new mouse genetic modification today should start with careful scrutiny of the resources that are already available, through the internet, for information relating to your gene of interest. International mouse consortia are constantly providing new genetically modified alleles of virtually any gene in the mouse genome. Therefore, unless a very specific knock-in allele is required, it is more than likely that the envisaged mutation has already been obtained somewhere and made available in the form of embryonic stem (ES) cell clones, live animals, or cryopreserved sperm or embryos. In this chapter, I will review the current (November 2010) global resources that are available through the internet, where the most updated information about any given mouse gene should be examined, before any new experiment is planned or conducted. The knowledge and adequate use of all these global resources should speed up the acquisition of knowledge in the fields of biology, biomedicine, and biotechnology, while avoiding the redundant use of animals for experimentation and optimizing the use of limited funding resources. In this chapter, I will try to respond to two basic questions: where is my mouse? and what is known about my gene?

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

CMMR:

Canadian mouse mutant repository

CREATE:

Coordination of resources for conditional expression of mutated mouse alleles

EBI:

European Bioinformatics Institute

EMAP:

Edinburgh Mouse Atlas Project

EMBL:

European Molecular Biology Laboratory

EMMA:

European Mouse Mutant Archive

EMPReSS:

European mouse phenotyping resource of standardized screens

ENSEMBL:

A joint project between EMBL – EBI and the Wellcome Trust Sanger Institute to develop a software system which produces and maintains automatic annotation on selected eukaryotic genomes

ES:

Embryonic stem

ESPCR:

European Society of Pigment Cell Research

EUCOMM:

European Conditional Mouse Mutagenesis

EuMMCR:

European mouse mutant cell repository

EUMODIC:

European Mouse Disease Clinic

EUMORPHIA:

European Union Mouse Research for Public Health and Industrial Applications

EUROPHENOME:

Open source project to develop a software system for capturing, storing, and analyzing raw phenotyping data from SOPs contained in EMPReSS

FP6:

Framework Programme 6

ICS:

Institut Clinique de la Souris

IGTC:

International Gene Trap Consortium

IKMC:

International KnockOut Mouse Consortium

IMSR:

International Mouse Strain Resource

ISTT:

International Society for Transgenic Technologies

JAX:

The Jackson Laboratory

KOMP:

Knock-Out Mouse Project

KORC:

Knock-Out Rat Consortium

MGI:

Mouse Genome Informatics

MMRRC:

Mouse Mutant Regional Resource Centres

NBRP:

National BioResource Project for the Rat

NCBI:

National Center for Biotechnology Information

NIH:

National Institutes of Health

NorCOMM:

North-American Conditional Mouse Mutagenesis

OMIM:

Online Mendelian Inheritance in Man

RGD:

Rat genome database

RRRC:

Rat Resource & Research Centre

SNP:

Single nucleotide polymorphism

SOP:

Standard operating procedures

TIGM:

Texas A&M Institute for Genomic Medicine

UCSC:

University of California, Santa Cruz

ZFIN:

Zebrafish model organism database

ZGC:

Zebrafish gene collection

ZIRC:

Zebrafish International Resource Center

References

  1. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  2. Mouse Genome Sequencing Consortium et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  Google Scholar 

  3. Skarnes WC, Von Melchner H, Wurst W, Hicks G, Nord AS, Cox T, Young SG, Ruiz P, Soriano P, Tessier-Lavigne M, Conklin BR, Stanford WL, Rossant J, International Gene Trap Consortium (2004) A public gene trap resource for mouse functional genomics. Nat Genet 36:543–544

    Article  PubMed  CAS  Google Scholar 

  4. Auwerx J, Avner P, Baldock R, Ballabio A, Balling R, Barbacid M, Berns A, Bradley A, Brown S, Carmeliet P, Chambon P, Cox R, Davidson D, Davies K, Duboule D, Forejt J, Granucci F, Hastie N, de Angelis MH, Jackson I, Kioussis D, Kollias G, Lathrop M, Lendahl U, Malumbres M, von Melchner H, Müller W, Partanen J, Ricciardi-Castagnoli P, Rigby P, Rosen B, Rosenthal N, Skarnes B, Stewart AF, Thornton J, Tocchini-Valentini G, Wagner E, Wahli W, Wurst W (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36:925–927

    Article  PubMed  CAS  Google Scholar 

  5. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36:921–924

    Article  PubMed  CAS  Google Scholar 

  6. International Mouse Knockout Consortium, Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128:9–13

    Article  PubMed  CAS  Google Scholar 

  7. Collins FS, Finnell RH, Rossant J, Wurst W (2007) A new partner for the International Knockout Mouse Consortium. Cell 129:235

    Article  PubMed  CAS  Google Scholar 

  8. Wilkinson P, Sengerova J, Matteoni R, Chen CK, Soulat G, Ureta-Vidal A, Fessele S, Hagn M, Massimi M, Pickford K, Butler RH, Marschall S, Mallon AM, Pickard A, Raspa M, Scavizzi F, Fray M, Larrigaldie V, Leyritz J, Birney E, Tocchini-Valentini GP, Brown S, Herault Y, Montoliu L, de Angelis MH, Smedley D (2010) EMMA–mouse mutant resources for the international scientific community. Nucleic Acids Res 38 (Database issue):D570–D576

    Google Scholar 

  9. Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, Lloyd KC, Bradley A, Skarnes WC (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods 6:493–495

    Article  PubMed  CAS  Google Scholar 

  10. Zurita E, Chagoyen M, Cantero M, Alonso R, González-Neira A, López-Jiménez A, López-Moreno JA, Landel CP, Benítez J, Pazos F, Montoliu L (2010) Genetic polymorphisms among C57BL/6 mouse inbred strains. Transgenic Res 2011, 20:481–489

    Google Scholar 

  11. Montoliu L, Whitelaw CB (2011) Using standard nomenclature to adequately name transgenes, knockout gene alleles and any mutation associated to a genetically modified mouse strain. Transgenic Res 20(2):435–440

    Article  PubMed  CAS  Google Scholar 

  12. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27

    Article  PubMed  CAS  Google Scholar 

  13. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428

    Article  PubMed  CAS  Google Scholar 

  14. Filipiak WE, Saunders TL (2006) Advances in transgenic rat production. Transgenic Res 15:673–686

    Article  PubMed  CAS  Google Scholar 

  15. Charreau B, Tesson L, Soulillou JP, Pourcel C, Anegon I (1996) Transgenesis in rats: technical aspects and models. Transgenic Res 5:223–234

    Article  PubMed  CAS  Google Scholar 

  16. Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302:1179

    Article  PubMed  CAS  Google Scholar 

  17. Popova E, Bader M, Krivokharchenko A (2009) Efficient production of nuclear transferred rat embryos by modified methods of reconstruction. Mol Reprod Dev 76:208–216

    Article  PubMed  CAS  Google Scholar 

  18. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  PubMed  CAS  Google Scholar 

  19. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Article  PubMed  CAS  Google Scholar 

  20. Tong C, Li P, Wu NL, Yan Y, Ying QL (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467:211–213

    Article  PubMed  CAS  Google Scholar 

  21. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  PubMed  CAS  Google Scholar 

  22. Rémy S, Tesson L, Ménoret S, Usal C, Scharenberg AM, Anegon I (2010) Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 19:363–371

    Article  PubMed  Google Scholar 

  23. Serikawa T, Mashimo T, Takizawa A, Okajima R, Maedomari N, Kumafuji K, Tagami F, Neoda Y, Otsuki M, Nakanishi S, Yamasaki K, Voigt B, Kuramoto T (2009) National BioResource Project-Rat and related activities. Exp Anim 58:333–341

    Article  PubMed  CAS  Google Scholar 

  24. Burket CT, Montgomery JE, Thummel R, Kassen SC, LaFave MC, Langenau DM, Zon LI, Hyde DR (2008) Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters. Transgenic Res 17:265–279

    Article  PubMed  CAS  Google Scholar 

  25. Fan L, Moon J, Crodian J, Collodi P (2006) Homologous recombination in zebrafish ES cells. Transgenic Res 15:21–30

    Article  PubMed  CAS  Google Scholar 

  26. Pan X, Wan H, Chia W, Tong Y, Gong Z (2005) Demonstration of site-directed recombination in transgenic zebrafish using the Cre/loxP system. Transgenic Res 14:217–223

    Article  PubMed  CAS  Google Scholar 

  27. Wong AC, Draper BW, Van Eenennaam AL (2011) FLPe functions in zebrafish embryos. Transgenic Res 20:409–415

    Article  PubMed  CAS  Google Scholar 

  28. Haga Y, Dominique VJ 3rd, Du SJ (2009) Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model. Transgenic Res 18:669–683

    Article  PubMed  CAS  Google Scholar 

  29. Sprague J, Bayraktaroglu L, Clements D, Conlin T, Fashena D, Frazer K, Haendel M, Howe D, Mani P, Ramachandran S, Schaper K, Segerdell E, Song P, Sprunger B, Taylor S, Van Slyke C, Westerfield M (2006) The Zebrafish Information Network: the zebrafish model organism database. Nucleic Acids Res 34:D581–D585

    Article  PubMed  CAS  Google Scholar 

  30. Mercader N, Leonardo E, Azpiazu N, Serrano A, Morata G, Martínez C, Torres M (1999) Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature 402:425–429

    Article  PubMed  CAS  Google Scholar 

  31. Giraldo P, Martínez A, Regales L, Lavado A, García-Díaz A, Alonso A, Busturia A, Montoliu L (2003) Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity. Nucleic Acids Res 31:6290–6305

    Article  PubMed  CAS  Google Scholar 

  32. Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, Millburn G, Osumi-Sutherland D, Schroeder A, Seal R, Zhang H, The FlyBase Consortium (2009) FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res 37:D555–D559

    Article  PubMed  CAS  Google Scholar 

  33. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluis Montoliu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Montoliu, L. (2011). Global Resources: Including Gene Trapped ES Cell Clones - Is Your Gene Already Knocked Out?. In: Pease, S., Saunders, T. (eds) Advanced Protocols for Animal Transgenesis. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20792-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20792-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20791-4

  • Online ISBN: 978-3-642-20792-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics