Skip to main content

Vertebrate Transgenesis by Transposition

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Transposable elements represent a class of DNA molecules that have the ability to move genetic material from one location to another. Since the first recognition and description of their activities by Barbara McClintock beginning in the 1950s, researchers have been harnessing their molecular machinery to deliver and mutate genes in a variety of whole animal and single-cellular systems. In this chapter, we describe the recent advances in establishing robust gene transfer applications to vertebrate laboratory model systems by introducing transposon molecular machinery into the one-cell embryo of mouse, rats, or zebrafish. The method leads to highly reproducible transgenesis in these systems, enabling a variety of biomedical research applications using genetically modified animals.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

CDS:

Coding sequence

EGA:

Embryonic genome activation

ITR:

Inverted terminal repeats

PB :

piggyBac

REN:

Restriction endonuclease

RT:

Room temperature

RNAse:

Ribonuclease

SB :

Sleeping Beauty

UTR:

Untranslated region

References

  1. Craig NL, Craigie R, Gellert M, Lambowitz AM (2002) Mobile DNA II. ASM Press, Washington, DC

    Google Scholar 

  2. Kano H et al (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23(11):1303–1312

    Article  PubMed  CAS  Google Scholar 

  3. Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214(4526):1244–1246

    Article  PubMed  CAS  Google Scholar 

  4. Gordon JW et al (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77(12):7380–7384

    Article  PubMed  CAS  Google Scholar 

  5. Wall RJ (2001) Pronuclear microinjection. Cloning Stem Cells 3(4):209–220

    Article  PubMed  CAS  Google Scholar 

  6. Dai J et al (2010) Non-homologous end joining plays a key role in transgene concatemer formation in transgenic zebrafish embryos. Int J Biol Sci 6(7):756–768

    Article  PubMed  CAS  Google Scholar 

  7. Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103(2):403–412

    PubMed  CAS  Google Scholar 

  8. Stuart GW et al (1990) Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development 109(3):577–584

    PubMed  CAS  Google Scholar 

  9. Lois C et al (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295(5556):868–872

    Article  PubMed  CAS  Google Scholar 

  10. van den Brandt J et al (2004) Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 39(2):94–99

    Article  PubMed  Google Scholar 

  11. Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31(2):159–173

    Article  PubMed  CAS  Google Scholar 

  12. Ellis J, Yao S (2005) Retrovirus silencing and vector design: relevance to normal and cancer stem cells? Curr Gene Ther 5(4):367–373

    Article  PubMed  CAS  Google Scholar 

  13. Grabundzija I et al (2010) Comparative analysis of transposable element vector systems in human cells. Mol Ther 18(6):1200–1209

    Article  PubMed  CAS  Google Scholar 

  14. Izsvak Z et al (2010) Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. Bioessays 32(9):756–767

    Article  PubMed  CAS  Google Scholar 

  15. Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 97(21):11403–11408

    Article  PubMed  CAS  Google Scholar 

  16. Korzh V (2007) Transposons as tools for enhancer trap screens in vertebrates. Genome Biol 8(Suppl 1):S8

    Article  PubMed  Google Scholar 

  17. Davidson AE et al (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263(2):191–202

    Article  PubMed  CAS  Google Scholar 

  18. Sinzelle L et al (2006) Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system. Transgenic Res 15(6):751–760

    Article  PubMed  CAS  Google Scholar 

  19. Hamlet MR et al (2006) Tol2 transposon-mediated transgenesis in Xenopus tropicalis. Genesis 44(9):438–445

    Article  PubMed  Google Scholar 

  20. Suster M, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10(1):477

    Article  PubMed  Google Scholar 

  21. Dupuy AJ et al (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 99(7):4495–4499

    Article  PubMed  CAS  Google Scholar 

  22. Mates L et al (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6):753–761

    Article  PubMed  CAS  Google Scholar 

  23. Carlson DF et al (2010) Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition. Transgenic Res 20(1):29–45

    Article  PubMed  Google Scholar 

  24. Ding S et al (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483

    Article  PubMed  CAS  Google Scholar 

  25. Balciunas D et al (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2(11):e169

    Article  PubMed  Google Scholar 

  26. Emelyanov A et al (2006) Trans-kingdom transposition of the maize dissociation element. Genetics 174(3):1095–1104

    Article  PubMed  CAS  Google Scholar 

  27. Emelyanov A, Parinov S (2008) Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish. Dev Biol 320(1):113–121

    Article  PubMed  CAS  Google Scholar 

  28. Ivics Z et al (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510

    Article  PubMed  CAS  Google Scholar 

  29. Cadinanos J, Bradley A (2007) Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35(12):e87

    Article  PubMed  Google Scholar 

  30. Kawakami K, Shima A (1999) Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240(1):239–244

    Article  PubMed  CAS  Google Scholar 

  31. Parinov S et al (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231(2):449–459

    Article  PubMed  CAS  Google Scholar 

  32. Ro H et al (2004) Novel vector systems optimized for injecting in vitro-synthesized mRNA into zebrafish embryos. Mol Cells 17(2):373–376

    PubMed  CAS  Google Scholar 

  33. Hyatt TM, Ekker SC (1999) Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol 59:117–126

    Article  PubMed  CAS  Google Scholar 

  34. Mates L (2011) Rodent transgenesis mediated by a novel hyperactive Sleeping Beauty transposon system. Methods Mol Biol 738:87–99

    Article  PubMed  CAS  Google Scholar 

  35. Cui Z et al (2002) Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J Mol Biol 318(5):1221–1235

    Article  PubMed  CAS  Google Scholar 

  36. Geurts AM et al (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther 8(1):108–117

    Article  PubMed  CAS  Google Scholar 

  37. Izsvak Z, Ivics Z, Plasterk RH (2000) Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302(1):93–102

    Article  PubMed  CAS  Google Scholar 

  38. Lu B et al (2007) Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system. Mamm Genome 18(5):338–346

    Article  PubMed  CAS  Google Scholar 

  39. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  PubMed  CAS  Google Scholar 

  40. Nagai T et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90

    Article  PubMed  CAS  Google Scholar 

  41. Urasaki A, Morvan G, Kawakami K (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174(2):639–649

    Article  PubMed  CAS  Google Scholar 

  42. Huang C-J et al (2003) Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn 228(1):30–40

    Article  PubMed  CAS  Google Scholar 

  43. Gibbs PD, Schmale MC (2000) GFP as a Genetic Marker Scorable Throughout the Life Cycle of Transgenic Zebra Fish. Mar Biotechnol (NY) 2(2):107–125

    CAS  Google Scholar 

  44. Hermanson S et al (2004) Sleeping Beauty transposon for efficient gene delivery. Methods Cell Biol 77:349–362

    Article  PubMed  CAS  Google Scholar 

  45. Westerfield M (2007) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 5th edn. University of Oregon Press, Eugene, OR

    Google Scholar 

  46. Li X et al (2005) piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Mol Biol 14(1):17–30

    Article  PubMed  Google Scholar 

  47. Cary LC et al (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172(1):156–169

    Article  PubMed  CAS  Google Scholar 

  48. Thibault ST et al (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36(3):283–287

    Article  PubMed  CAS  Google Scholar 

  49. Vigdal TJ et al (2002) Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 323:441–452

    Article  PubMed  CAS  Google Scholar 

  50. Carlson CM et al (2003) Transposon mutagenesis of the mouse germline. Genetics 165(1):243–256

    PubMed  CAS  Google Scholar 

  51. Koga A (2004) Transposition mechanisms and biotechnology applications of the medaka fish Tol2 transposable element. Adv Biophys 38:161–180

    Article  CAS  Google Scholar 

  52. Kondrychyn I et al (2009) Genome-wide analysis of Tol2 transposon reintegration in zebrafish. BMC Genomics 10(1):418

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aron Geurts .

Editor information

Editors and Affiliations

11.1 Electronic Supplementary material

microinjection (169 MB)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Geurts, A., Balciunas, D., Mates, L. (2011). Vertebrate Transgenesis by Transposition. In: Pease, S., Saunders, T. (eds) Advanced Protocols for Animal Transgenesis. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20792-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20792-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20791-4

  • Online ISBN: 978-3-642-20792-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics