Skip to main content

Miniantibodies

  • Protocol
Antibody Engineering

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Recombinant antibodies have become a standard component of research, diagnostics, and therapy. In the development of recombinant antibodies – irrespective of the final format – a monovalent construct is virtually always the first protein to be tested. This is due to the fact that essentially all selection systems use such formats, and that the periplasmic production of scFv and Fab fragments has now become standard. Nonetheless, some tasks require an increase of the avidity to the respective antigens, antibody, as well as the fragment size. A convenient way to rather quickly achieve both is by fusing a hinge region followed by a dimerizing or oligomerizing structure to the C-terminus of the antibody fragment, creating the so-called “miniantibodies”. Compared to other available bivalent or bispecific formats, miniantibodies distinguish themselves by their rotational freedom and flexibility, being similar to full-length antibodies. This protocol describes the modular conversion of scFv fragments into miniantibodies, resulting in a final multimerized structure with two or four binding sites, and we present different self-associating domains suitable for this task. Additionally, we also provide information on their production and discuss how to improve the yield of soluble antibody fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IPTG:

Isopropylthiogalactoside

PBS:

Phosphate buffered saline

scFv:

Single-chain Fv fragment

tet:

Tetracycline

LB:

Luria-Bertani media

SB:

Super broth media

References

  • Arndt KM, Pelletier JN, Müller KM, Alber T, Michnick SW, Plückthun A (2000) A heterodimeric coiled-coil peptide pair selected in vivo from a designed library-versus-library ensemble. J Mol Biol 295:627–639

    Article  PubMed  CAS  Google Scholar 

  • Arndt KM, Müller KM, Plückthun A (2001) Helix-stabilized Fv (hsFv) antibody fragments: substituting the constant domains of a Fab fragment for a heterodimeric coiled-coil domain. J Mol Biol 312:221–228

    Article  PubMed  CAS  Google Scholar 

  • Bass S, Gu Q, Christen A (1996) Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J Bacteriol 178:1154–1161

    PubMed  CAS  Google Scholar 

  • Bothmann H, Plückthun A (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol 16:376–380

    Article  PubMed  CAS  Google Scholar 

  • Bothmann H, Plückthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA: I. Increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem 275:17100–17105

    Article  PubMed  CAS  Google Scholar 

  • Crothers DM, Metzger H (1972) The influence of polyvalency on the binding properties of antibodies. Immunochemistry 9:341–357

    Article  PubMed  CAS  Google Scholar 

  • Deyev SM, Waibel R, Lebedenko EN, Schubiger AP, Plückthun A (2003) Design of multivalent complexes using the barnase*barstar module. Nat Biotechnol 21:1486–1492

    Article  PubMed  CAS  Google Scholar 

  • Dürr E, Jelesarov I, Bosshard HR (1999) Extremely fast folding of a very stable leucine zipper with a strengthened hydrophobic core and lacking electrostatic interactions between helices. Biochemistry 38:870–880

    Article  PubMed  Google Scholar 

  • Eisenberg D, Wilcox W, Eshita SM, Pryciak PM, Ho SP, DeGrado WF (1986) The design, synthesis, and crystallization of an alpha-helical peptide. Proteins 1:16–22

    Article  PubMed  CAS  Google Scholar 

  • Ewert S, Honegger A, Plückthun A (2004) Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 34:184–199

    Article  PubMed  CAS  Google Scholar 

  • Ge L, Knappik A, Pack P, Freund C, Plückthun A (1995) Expressing antibodies in Escherichia coli. In: Borrebaeck C (ed) Antibody engineering, 2nd ed. Oxford University Press, London, pp 229–236

    Google Scholar 

  • Harbury PB, Zhang T, Kim PS, Alber T (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401–1407

    Article  PubMed  CAS  Google Scholar 

  • Hill RB, Degrado WF (1998) Solution structure of alpha-2D, a native-like de novo designed protein. J Am Chem Soc 120:1138–1145

    Article  CAS  Google Scholar 

  • Holliger P, Prospero T, Winter G (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 90:6444–6448

    Article  PubMed  CAS  Google Scholar 

  • Honegger A, Malebranche AD, Röthlisberger D, Plückthun A (2009) The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains. Protein Eng Des Sel 22:121–134

    Article  PubMed  CAS  Google Scholar 

  • Horn U, Strittmatter W, Krebber A, Knüpfer U, Kujau M, Wenderoth R, Müller K, Matzku S, Plückthun A, Riesenberg D (1996) High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl Microbiol Biotechnol 46:524–532

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, Shively JE, Wu AM (1996) Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56:3055–3061

    PubMed  CAS  Google Scholar 

  • Huston JS, Mudgett-Hunter M, Tai MS, McCartney J, Warren F, Haber E, Oppermann H (1991) Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol 203:46–88

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey PD, Gorina S, Pavletich NP (1995) Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 Ångstroms. Science 267:1498–1502

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Plückthun A (1997) Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Eng 10:959–966

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann M, Lindner P, Honegger A, Blank K, Tschopp M, Capitani G, Plückthun A, Grütter MG (2002) Crystal structure of the anti-His tag antibody 3D5 single-chain fragment complexed to its antigen. J Mol Biol 318:135–147

    Article  PubMed  CAS  Google Scholar 

  • Kellner C, Bruenke J, Stieglmaier J, Schwemmlein M, Schwenkert M, Singer H, Mentz K, Peipp M, Lang P, Oduncu F, Stockmeyer B, Fey GH (2008) A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother 31:871–884

    Article  PubMed  CAS  Google Scholar 

  • Kipriyanov SM, Moldenhauer G, Schuhmacher J, Cochlovius B, Von der Lieth CW, Matys ER, Little M (1999) Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol 293:41–56

    Article  PubMed  CAS  Google Scholar 

  • Knappik A, Plückthun A (1994) An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments. Biotechniques 17:754–761

    PubMed  CAS  Google Scholar 

  • Knappik A, Plückthun A (1995) Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng 8:81–89

    Article  PubMed  CAS  Google Scholar 

  • Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Plückthun A (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201:35–55

    Article  PubMed  CAS  Google Scholar 

  • Kubetzko S, Balic E, Waibel R, Zangemeister-Wittke U, Plückthun A (2006) PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5: effects on tumor targeting. J Biol Chem 281:35186–35201

    Article  PubMed  CAS  Google Scholar 

  • Kügler M, Stein C, Schwenkert M, Saul D, Vockentanz L, Huber T, Wetzel SK, Scholz O, Plückthun A, Honegger A, Fey GH (2009) Stabilization and humanization of a single-chain Fv antibody fragment specific for human lymphocyte antigen CD19 by designed point mutations and CDR-grafting onto a human framework. Protein Eng Des Sel 22:135–147

    Article  PubMed  Google Scholar 

  • Lindner P, Plückthun A (2001) Miniantibodies. In: Kontermann R, Dübel S (eds) Antibody engineering. Springer, Berlin, pp 637–647

    Google Scholar 

  • Lindner P, Guth B, Wülfing C, Krebber C, Steipe B, Müller F, Plückthun A (1992) Purification of native proteins from the cytoplasm and periplasm of Escherichia coli using IMAC and histidine tails: a comparison of proteins and protocols. Methods 4:41–56

    Article  CAS  Google Scholar 

  • Lindner P, Bauer K, Krebber A, Nieba L, Kremmer E, Krebber C, Honegger A, Klinger B, Mocikat R, Plückthun A (1997) Specific detection of his-tagged proteins with recombinant anti-His tag scFv-phosphatase or scFv-phage fusions. Biotechniques 22:140–149

    PubMed  CAS  Google Scholar 

  • Maurer R, Meyer B, Ptashne M (1980) Gene regulation at the right operator (OR) bacteriophage lambda. I. OR3 and autogenous negative control by repressor. J Mol Biol 139:147–161

    Article  PubMed  CAS  Google Scholar 

  • Mittl PR, Chene P, Grütter MG (1998) Crystallization and structure solution of p53 (residues 326–356) by molecular replacement using an NMR model as template. Acta Crystallogr D Biol Crystallogr 54:86–89

    Article  PubMed  CAS  Google Scholar 

  • Müller KM, Arndt KM, Plückthun A (1998a) A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Lett 432:45–49

    Article  PubMed  Google Scholar 

  • Müller KM, Arndt KM, Plückthun A (1998b) Model and simulation of multivalent binding to fixed ligands. Anal Biochem 261:149–158

    Article  PubMed  Google Scholar 

  • Müller KM, Arndt KM, Strittmatter W, Plückthun A (1998c) The first constant domain (CH1 and CL) of an antibody used as heterodimerization domain for bispecific miniantibodies. FEBS Lett 422:259–264

    Article  PubMed  Google Scholar 

  • Nieba L, Honegger A, Krebber C, Plückthun A (1997) Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng 10:435–444

    Article  PubMed  CAS  Google Scholar 

  • O'Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254:539–544

    Article  PubMed  Google Scholar 

  • Pack P, Plückthun A (1992) Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry 31:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Pack P, Kujau M, Schroeckh V, Knüpfer U, Wenderoth R, Riesenberg D, Plückthun A (1993) Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. Biotechnology (NY) 11:1271–1277

    CAS  Google Scholar 

  • Pack P, Müller K, Zahn R, Plückthun A (1995) Tetravalent miniantibodies with high avidity assembling in Escherichia coli. J Mol Biol 246:28–34

    Article  PubMed  CAS  Google Scholar 

  • Plückthun A, Pack P (1997) New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology 3:83–105

    Article  PubMed  Google Scholar 

  • Plückthun A, Krebber A, Krebber C, Horn U, Knüpfer U, Wenderoth R, Nieba L, Proba K, Riesenberg D (1996) Producing antibodies in Escherichia coli: Fom PCR to fermentation. In: McCafferty J, Hoogenboom H (eds) Antibody engineering: a practical approach. IRL Press, Oxford, pp 203–252

    Google Scholar 

  • Rheinnecker M, Hardt C, Ilag LL, Kufer P, Gruber R, Hoess A, Lupas A, Rottenberger C, Plückthun A, Pack P (1996) Multivalent antibody fragments with high functional affinity for a tumor-associated carbohydrate antigen. J Immunol 157:2989–2997

    PubMed  CAS  Google Scholar 

  • Rudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10:49–56

    PubMed  CAS  Google Scholar 

  • Schroeckh V, Kujau M, Knüpfer U, Wenderoth R, Mörbe J, Riesenberg D (1996) Formation of recombinant proteins in Escherichia coli under control of a nitrogen regulated promoter at low and high cell densities. J Biotechnol 49:45–58

    Article  PubMed  CAS  Google Scholar 

  • Todorovska A, Roovers RC, Dolezal O, Kortt AA, Hoogenboom HR, Hudson PJ (2001) Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J Immunol Methods 248:47–66

    Article  PubMed  CAS  Google Scholar 

  • Willuda J, Honegger A, Waibel R, Schubiger PA, Stahel R, Zangemeister-Wittke U, Pluckthun A (1999) High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res 59:5758–5767

    PubMed  CAS  Google Scholar 

  • Willuda J, Kubetzko S, Waibel R, Schubiger PA, Zangemeister-Wittke U, Plückthun A (2001) Tumor targeting of mono-, di-, and tetravalent anti-p185(HER-2) miniantibodies multimerized by self-associating peptides. J Biol Chem 276:14385–14392

    PubMed  CAS  Google Scholar 

  • Woolfson DN (2005) The design of coiled-coil structures and assemblies. Adv Protein Chem 70:79–112

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Tanha J, Hirama T, Khieu NH, To R, Tong-Sevinc H, Stone E, Brisson JR, MacKenzie CR (2004) Pentamerization of single-domain antibodies from phage libraries: a novel strategy for the rapid generation of high-avidity antibody reagents. J Mol Biol 335:49–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This chapter is based on the original work of Peter Pack, Jörg Willuda and Susanne Kubetzko, with subsequent contributions from Kerstin Blank and Barbara Klinger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Plückthun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Schaefer, J.V., Lindner, P., Plückthun, A. (2010). Miniantibodies. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01147-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01147-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01146-7

  • Online ISBN: 978-3-642-01147-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics