Skip to main content

Expression of Antibody Fragments in Transgenic Plants

  • Protocol

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Plants are attractive systems for the expression of full-length antibodies and also for antibody derivatives such as scFvs, diabodies, camelid VHH and minibodies. For ‘Molecular Pharming’ ER retention of antibody fragments has been turned out to be the method of choice for production in leaves as well as in potato tubers and seeds. Various methods have been developed to select and characterize specific and high affine recombinant antibodies against target antigens in plant cells. The necessary technology to accumulate specific antibodies in specific cell compartments or in a plant organ of choice is generally available. Standard methods for expression of recombinant antibody fragments and for their physical and functional characterization are described in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Artsaenko O, Peisker M, Zur Nieden U, Fiedler U, Weiler EW, Muntz K, Conrad U (1995) Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J 8:745–750

    Article  PubMed  CAS  Google Scholar 

  • Artsaenko O, Kettig B, Fiedler U, Conrad U, During K (1998) Potato tubers as a biofactory for recombinant antibodies. Mol Breed 4:313–319

    Article  CAS  Google Scholar 

  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242:423–426

    Article  PubMed  CAS  Google Scholar 

  • Boonrod KJ, Galetzka D, Nagy PD, Conrad U, Krczal G (2004) Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol 22:856–862

    Article  PubMed  CAS  Google Scholar 

  • Borrebaeck CA, Malmborg AC, Furebring C, Michaelsson A, Ward S, Danielsson L, Ohlin M (1992) Kinetic analysis of recombinant antibody-antigen interactions: relation between structural domains and antigen binding. Biotechnology 10:697–698

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: An essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38:101–109

    Article  PubMed  CAS  Google Scholar 

  • Conrad U, Manteuffel R (2001) Immunomodulation of phytohormones and functional proteins in plant cells. Trends Plant Sci 6:399–402

    Article  PubMed  CAS  Google Scholar 

  • Conrad U, Scheller J (2005) Considerations on antibody-phage display methodology. Comb Chem High Throughput Screen 8:117–126

    Article  PubMed  CAS  Google Scholar 

  • Conrad U, Fiedler U, Artsaenko O, Phillips J (1997) Single-chain antibodies expressed in plants. In: Cunninham C, Porter S (eds) Methods in biotechnology – recombinant proteins from plants: production and isolation of clinically useful compounds. Humana Press, Totowa, NJ, pp 103–127

    Google Scholar 

  • Fiedler U, Phillips J, Artsaenko O, Conrad U (1997) Optimization of scFv antibody production in transgenic plants. Immunotechnology 3:205–216

    Article  PubMed  CAS  Google Scholar 

  • Gahrtz M, Conrad U (2009) Immunomodulation of plant function by in vitro selected single-chain Fv intrabodies. In: Faye L, Gomord V (eds) Methods in molecular biology: recombinant proteins from plants. Humana Press, Totowa, NJ

    Google Scholar 

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  PubMed  CAS  Google Scholar 

  • Ismaili A, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Memari HR (2007) Production of anti-(mucin MUC1) single-domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnol Appl Biochem 47:11–19

    Article  PubMed  CAS  Google Scholar 

  • Jobling SA, Jarman C, Teh MM, Holmberg N, Blake C, Verhoeyen ME (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol 21:77–80

    Article  PubMed  CAS  Google Scholar 

  • Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko S, Tripp J, Nieden U, Neumann D, Conrad U, Manteuffel R (2005) Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41:269–281

    Article  PubMed  CAS  Google Scholar 

  • Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74:277–302

    PubMed  CAS  Google Scholar 

  • Nolke G, Schneider B, Fischer R, Schillberg S (2005) Immunomodulation of polyamine biosynthesis in tobacco plants has a significant impact on polyamine levels and generates a dwarf phenotype. Plant Biotechnol J 3:237–247

    Article  PubMed  Google Scholar 

  • Owen M, Gandecha A, Cockburn B, Whitelam G (1992) Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Biotechnology (N.Y) 10:790–794

    Article  CAS  Google Scholar 

  • Peeters K, De Wilde C, Depicker A (2001) Highly efficient targeting and accumulation of a Fab fragment within the secretory pathway and apoplast of Arabidopsis thaliana. Eur J Biochem 268:4251–4260

    Article  PubMed  CAS  Google Scholar 

  • Phillips J, Artsaenko O, Fiedler U, Horstmann C, Mock HP, Muntz K, Conrad U (1997) Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J 16:4489–4496

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning – a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Santos MO, Crosby WL, Winkel BSJ (2004) Modulation of flavonoid metabolism in Arabidopsis using a phage-derived antibody. Mol Breed 13:333–343

    Article  CAS  Google Scholar 

  • Scheller J, Leps M, Conrad U (2006) Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Plant Biotechnol J 4:243–249

    Article  PubMed  CAS  Google Scholar 

  • Schillberg S, Zimmermann S, Zhang MY, Fischer R (2001) Antibody-based resistance to plant pathogens. Transgenic Res 10:1–12

    Article  PubMed  CAS  Google Scholar 

  • Schillberg S, Emans N, Fischer R (2002) Antibody molecular farming in plants and plant cells. Phytochem Rev 1:45–54

    Article  CAS  Google Scholar 

  • Senger S, Mock HP, Conrad U, Manteuffel R (2001) Immunomodulation of ABA function affects early events in somatic embryo development. Plant Cell Rep 20:112–120

    Article  CAS  Google Scholar 

  • Strauss M, Kauder F, Peisker M, Sonnewald U, Conrad U, Heineke D (2001) Expression of an abscisic acid-binding single-chain antibody influences the subcellular distribution of abscisic acid and leads to developmental changes in transgenic potato plants. Planta 213:361–369

    Article  PubMed  CAS  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, De MD, Cattaneo A, Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472

    Article  PubMed  CAS  Google Scholar 

  • Teh YH, Kavanagh TA (2009) High-level expression of Camelid nanobodies in Nicotiana benthamiana. Transgenic Res, in press

    Google Scholar 

  • ten Hoopen P, Hunger A, Muller A, Hause B, Kramell R, Wasternack C, Rosahl S, Conrad U (2007) Immunomodulation of jasmonate to manipulate the wound response. J Exp Bot 58:2525–2535

    Article  PubMed  Google Scholar 

  • Urakami E, Yamaguchi I, Asami T, Conrad U, Suzuki Y (2008) Immunomodulation of gibberellin biosynthesis using an anti-precursor gibberellin antibody confers gibberellin-deficient phenotypes. Planta 228:863–873

    Article  PubMed  CAS  Google Scholar 

  • Whitlow M, Bell BA, Feng SL, Filpula D, Hardman KD, Hubert SL, Rollence ML, Wood JF, Schott ME, Milenic DE (1993) An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng 6:989–995

    Article  PubMed  CAS  Google Scholar 

  • Wigger J, Phillips J, Peisker M, Hartung W, zur Nieden U, Artsaenko O, Fiedler U, Conrad U (2002) Prevention of stomatal closure by immunomodulation of endogenous abscisic acid and its reversion by abscisic acid treatment: physiological behaviour and morphological features of tobacco stomata. Planta 215:413–423

    Article  PubMed  CAS  Google Scholar 

  • Winichaykul S, Pernthaner A, Scott R, Vlaming R, Roberts N (2009) Head-to-tail fusions of camelid antibodies can be expressed in planta and bind in rumen fluid. Biotechnol Appl Biochem 53:111–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Conrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Conrad, U., Floss, D.M. (2010). Expression of Antibody Fragments in Transgenic Plants. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01147-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01147-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01146-7

  • Online ISBN: 978-3-642-01147-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics