Skip to main content

Functional Characterization of Antibodies Neutralizing Soluble Factors In Vitro and In Vivo

  • Protocol
Antibody Engineering

Functional characterization of antibodies that inhibit soluble cytokines or chemokines requires robust, sensitive in vitro and in vivo bioassays. Testing an antibody in vitro requires consideration of antigen source, integrity, and concentration, as well as the magnitude of the biologic response and assay interference by components in the antibody test sample. This chapter describes several exemplary in vitro bioassays, including an assay to determine species cross-reactivity of an anti–tumor necrosis factor antibody and a whole blood assay for interleukin–18 (IL–18) to determine neutralization of native antigen. Testing an antibody in vivo requires consideration of species cross-reactivity, selection of the dose range and the route of administration, analyses of the pharmacokinetics and tissue distribution of the antibody, and evaluation of host antibody responses. An example of an in vivo bioassay, in which human peripheral blood mononuclear cells are injected into severe combined immunodeficient mice and activated in vivo to produce human IL–18, is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914

    Article  PubMed  CAS  Google Scholar 

  • Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J (2006) Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311:1924–1927

    Article  PubMed  CAS  Google Scholar 

  • Boyman O, Ramsey C, Kim DM, Sprent J, Surh CD (2008) IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol 180:7265–7275

    PubMed  CAS  Google Scholar 

  • Darling RJ, Brault PA (2004) Kinetic exclusion assay technology: characterization of molecular interactions. Assay Drug Dev Technol 2:647–657

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Botran R, Vètvička V (2001) Assays of cytokines. In: Methods in cellular immunology, 2nd edn. CRC Press, Boca Raton, FL. pp 87–158

    Google Scholar 

  • Finkelman FD, Madden KB, Morris SC, Holmes JM, Boiani N, Katona IM, Maliszewski CR (1993) Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J Immunol 151:1235–1244

    PubMed  CAS  Google Scholar 

  • Foster B, Prussin C, Liu F, Whitmire JK, Whitton JL (2007) Detection of intracellular cytokines by flow cytometry. Curr Protoc Immunol Chap. 6 :Unit 6.24

  • Glickman JF, Wu X, Mercuri R, Illy C, Bowen BR, He Y, Sills M (2002) A comparison of AlphaScreen, TR-FRET, and TRF as assay methods for FXR nuclear receptors. J Biomol Screen 7:3–10

    Article  PubMed  CAS  Google Scholar 

  • Guenat S, Rouleau N, Bielmann C, Bedard J, Maurer F, Allaman-Pillet N, Nicod P, Bielefeld-Sévigny M, Beckmann JS, Bonny C, Bossé R, Roduit R (2006) Homogeneous and nonradioactive high-throughput screening platform for the characterization of kinase inhibitors in cell lysates. J Biomol Screen 11:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Haringman JJ, Gerlag DM, Smeets TJ, Baeten D, van den Bosch F, Bresnihan B, Breedveld FC, Dinant HJ, Legay F, Gram H, Loetscher P, Schmouder R, Woodworth T, Tak PP (2006) A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum 54:2387–2392

    Article  PubMed  CAS  Google Scholar 

  • Hautanen A, Gailit J, Mann DM, Ruoslahti E (1989) Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J Biol Chem 264:1437–1442

    PubMed  CAS  Google Scholar 

  • Jeffes EW 3rd, Schmitz K, Yamamoto R, Tomich JM, Beckman M, Nep R, Knauer M (1991) A simple nonisotopic in vitro bioassay for LT and TNF employing sodium fluoride-treated L-929 target cells that detects picogram quantities of LT and TNF and is as sensitive as TNF assays done with ELISA methodology. Lymphokine Cytokine Res 10:147–151

    PubMed  CAS  Google Scholar 

  • Kasaian MT, Tan XY, Jin M, Fitz L, Marquette K, Wood N, Cook TA, Lee J, Widom A, Agostinelli R, Bree A, Schlerman FJ, Olland S, Wadanoli M, Sypek J, Gill D, Goldman SJ, Tchistiakova L (2008) Interleukin-13 neutralization by two distinct receptor blocking mechanisms reduces immunoglobulin E responses and lung inflammation in cynomolgus monkeys. J Pharmacol Exp Ther 325:882–892

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, Rubinstein M, Dinarello CA (2000) Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA 97:1190–1195

    Article  PubMed  CAS  Google Scholar 

  • Konishi K, Tanabe F, Taniguchi M, Yamauchi H, Tanimoto T, Ikeda M, Orita K, Kurimoto M (1997) A simple and sensitive bioassay for the detection of human interleukin-18/interferon-gamma-inducing factor using human myelomonocytic KG-1 cells. J Immunol Methods 209:187–191

    Article  PubMed  CAS  Google Scholar 

  • Li J, Tomkinson KN, Tan XY, Wu P, Yan G, Spaulding V, Deng B, Annis-Freeman B, Heveron K, Zollner R, De Zutter G, Wright JF, Crawford TK, Liu W, Jacobs KA, Wolfman NM, Ling V, Pittman DD, Veldman GM, Fouser LA (2004) Temporal associations between interleukin 22 and the extracellular domains of IL-22R and IL-10R2. Int Immunopharmacol 4:693–708

    Article  PubMed  CAS  Google Scholar 

  • Llopis J, Westin S, Ricote M, Wang Z, Cho CY, Kurokawa R, Mullen TM, Rose DW, Rosenfeld MG, Tsien RY, Glass CK (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci USA 97:4363–4368

    Article  PubMed  CAS  Google Scholar 

  • May LT, Neta R, Moldawer LL, Kenney JS, Patel K, Sehgal PB (1993) Antibodies chaperone circulating IL-6. Paradoxical effects of anti-IL-6 “neutralizing” antibodies in vivo. J Immunol 151:3225–3236

    PubMed  CAS  Google Scholar 

  • Meager A (2006) Measurement of cytokines by bioassays: theory and application. Methods 38:237–252

    Article  PubMed  CAS  Google Scholar 

  • Miller R, Sadhukhan R, Wu C (2008) Development of an in vitro potency bioassay for therapeutic IL-13 antagonists: the A-549 cell bioassay. J Immunol Methods 334:134–141

    Article  PubMed  CAS  Google Scholar 

  • Miyashita M, Shimada T, Miyagawa H, Akamatsu M (2005) Surface plasmon resonance-based immunoassay for 17beta-estradiol and its application to the measurement of estrogen receptor-binding activity. Anal Bioanal Chem 381:667–673

    Article  PubMed  CAS  Google Scholar 

  • Myszka DG, Jonsen MD, Graves BJ (1998) Equilibrium analysis of high affinity interactions using BIACORE. Anal Biochem 265:326–330

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001) Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev 12:53–72

    Article  PubMed  CAS  Google Scholar 

  • Pappu BP, Dong C (2007) Measurement of interleukin–17. Curr Protoc Immunol Chap. 6:Unit 6.25

    Google Scholar 

  • Pauli U, Bertoni G, Duerr M, Peterhans E (1994) A bioassay for the detection of tumor necrosis factor from eight different species: evaluation of neutralization rates of a monoclonal antibody against human TNF-alpha. J Immunol Methods 171:263–265

    Article  PubMed  CAS  Google Scholar 

  • Underwood PA (1993) Problems and pitfalls with measurement of antibody affinity using solid phase binding in the ELISA. J Immunol Methods 164:119–130

    Article  PubMed  CAS  Google Scholar 

  • Wilson J, Rossi CP, Carboni S, Fremaux C, Perrin D, Soto C, Kosco-Vilbois M, Scheer A (2003) A homogeneous 384-well high-throughput binding assay for a TNF receptor using AlphaScreen technology. J Biomol Screen 8:522–532

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu RR, Santora L, Davis-Taber R, Kunes Y, Fung E, Schwartz A, Sakorafas P, Gu J, Tarcsa E, Murtaza A, Ghayur T (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25:1290–1297

    Article  PubMed  CAS  Google Scholar 

  • Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ (1995) Human IL-17: a novel cytokine derived from T cells. J Immunol 155:5483–5486

    PubMed  CAS  Google Scholar 

  • Zabeau L, Van der Heyden J, Broekaert D, Verhee A, Vandekerckhove J, Wu SJ, Chaiken I, Heinrich P, Behrmann I, Tavernier J (2001) Neutralizing monoclonal antibodies can potentiate IL-5 signaling. Eur J Immunol 31:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Zeng R, Spolski R, Leonard WJ (2007) Measurement of interleukin–21. Curr Protoc Immunol Chap. 6:Unit 6.30

    Google Scholar 

Download references

Acknowledgements

Editorial support was provided by Robin L. Stromberg, PhD, of Arbor Communications, Inc. (Ann Arbor, MI, USA) and funded by Abbott Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geertruida M. Veldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Veldman, G.M., Kaymakcalan, Z., Miller, R., Kalghatgi, L., Salfeld, J.G. (2010). Functional Characterization of Antibodies Neutralizing Soluble Factors In Vitro and In Vivo . In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01144-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01144-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01143-6

  • Online ISBN: 978-3-642-01144-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics