Skip to main content

Humanization by Resurfacing

  • Protocol
Antibody Engineering

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 5048 Accesses

Monoclonal antibodies can be humanized by changing murine framework surface residues into those that are typically observed in closely related human counterparts. This technique of resurfacing an antibody is based on the observation that the antigenicity of a protein is determined by the accessible and protruding residues. Since nothing is changed to the CDR-framework interactions at the interior, and only subtle changes are made to the exterior, this usually has only minor effects on the conformation and the activity of the resurfaced antibody. A detailed structure-based protocol is proposed. The approach has been successfully applied to two independent antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barlow DJ, Edwards MS, Thornton JM (1986) Continuous and discontinuous protein antigenic determinants. Nature 322:747–748

    Article  PubMed  CAS  Google Scholar 

  • Benjamin DC, Berzofsky JA, East IJ, Gurd FR, Hannum C, Leach SJ, Margoliash E, Michael JG, Miller A, Prager EM (1984) The antigenic structure of proteins: a reappraisal. Annu Rev Immunol 2:67–101

    Article  PubMed  CAS  Google Scholar 

  • Boulianne GL, Hozumi N, Shulman MJ (1984) Production of functional chimaeric mouse human-antibody. Nature 312:643–646

    Article  PubMed  CAS  Google Scholar 

  • Bruggemann M, Williams GT, Bindon CI, Clark MR, Walker MR, Jefferis R, Waldmann H, Neuberger MS (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 166:1351–1361

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR (1989) Conformations of immunoglobulin hypervariable regions. Nature 342:877–883

    Article  PubMed  CAS  Google Scholar 

  • Co MS, Deschamps M, Whitley RJ, Queen C (1991) Humanized antibodies for antiviral therapy. Proc Natl Acad Sci USA 88:2869–2873

    Article  PubMed  CAS  Google Scholar 

  • Colnot DR, Roos JC, de Bree R, Wilhelm AJ, Kummer JA, Hanft G, Heider KH, Stehle G, Snow GB, van Dongen GA (2003) Safety, biodistribution, pharmacokinetics, and immunogenicity of 99mTc-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 52:576–582

    Article  PubMed  CAS  Google Scholar 

  • Delagrave S, Catalan J, Sweet C, Drabik G, Henry A, Rees A, Monath TP, Guirakhoo F (1999) Effects of humanization by variable domain resurfacing on the antiviral activity of a single-chain antibody against respiratory syncytial virus. Protein Eng 12:357–362

    Article  PubMed  CAS  Google Scholar 

  • Delhaise P, Bardiaux M, De Maeyer M, Prevost M, Vanbelle D, Donneux J, Lasters I, Vancustem E, Alard P, Wodak SJ (1988) The Brugel package – toward computer-aided design of macromolecules. J Mol Graph 6:219–219

    Article  Google Scholar 

  • Fontayne A, Vanhoorelbeke K, Pareyn I, Van Rompaey I, Meiring M, Lamprecht S, Roodt J, Desmet J, Deckmyn H (2006) Rational humanization of the powerful antithrombotic anti-GPIbα antibody: 6B4. Thromb Haemost 96:671–684

    PubMed  CAS  Google Scholar 

  • Fontayne A, Meiring M, Lamprecht S, Roodt J, Demarsin E, Barbeaux P, Deckmyn H (2008) The humanized anti-glycoprotein Ib monoclonal antibody h6B4-Fab is a potent and safe antithrombotic in a high shear arterial thrombosis model in baboons. Thromb Haemost 100:670–677

    PubMed  CAS  Google Scholar 

  • Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224:487–499

    Article  PubMed  CAS  Google Scholar 

  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  PubMed  CAS  Google Scholar 

  • Khazaeli MB, Saleh MN, Liu TP, Meredith RF, Wheeler RH, Baker TS, King D, Secher D, Allen L, Rogers K (1991) Pharmacokinetics and immune response of 131I-chimeric mouse/human B72.3 (human gamma 4) monoclonal antibody in humans. Cancer Res 51:5461–5466

    PubMed  CAS  Google Scholar 

  • Liwo A, Czaplewski C, Oldziej S, Scheraga HA (2008) Computational techniques for efficient conformational sampling of proteins. Curr Opin Struct Biol 18:134–139

    Article  PubMed  CAS  Google Scholar 

  • LoBuglio AF, Wheeler RH, Trang J, Haynes A, Rogers K, Harvey EB, Sun L, Ghrayeb J, Khazaeli MB (1989) Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc Natl Acad Sci USA 86:4220–4224

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Dousis AD, Ma J (2008) OPUS-Rota: a fast and accurate method for side-chain modeling. Protein Sci 17:1576–1585

    Article  PubMed  CAS  Google Scholar 

  • Maloney DG (1999) Preclinical and phase I and II trials of rituximab. Seminars Oncol 26:74–78

    CAS  Google Scholar 

  • Mian IS, Bradwell AR, Olson AJ (1991) Structure, function, and properties of antibody binding sites. J Mol Biol 217:133–151

    Article  PubMed  CAS  Google Scholar 

  • Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 81:6851–6855

    Article  PubMed  CAS  Google Scholar 

  • Novotny J, Handschumacher M, Haber E, Bruccoleri RE, Carlson WB, Fanning DW, Smith JA, Rose GD (1986) Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc Natl Acad Sci USA 83:226–230

    Article  PubMed  CAS  Google Scholar 

  • Nussenblatt RB, Fortin E, Schiffman R, Rizzo L, Smith J, Van Veldhuisen P, Sran P, Yaffe A, Goldman CK, Waldmann TA, Whitcup SM (1999) Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: a phase I/II clinical trial. Proc Natl Acad Sci USA 96:7462–7466

    Article  PubMed  CAS  Google Scholar 

  • Olson MA, Feig M, Brooks CL 3rd (2008) Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions. J Comput Chem 15:820–831

    Article  Google Scholar 

  • Padlan EA (1991) A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol 28:489–498

    Article  PubMed  CAS  Google Scholar 

  • Pedersen JT, Henry AH, Searle SJ, Guild BC, Roguska M, Rees AR (1994) Comparison of surface accessible residues in human and murine immunoglobulin Fv domains. Implication for humanization of murine antibodies. J Mol Biol 235:959–973

    Article  PubMed  CAS  Google Scholar 

  • Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 86:10029–10033

    Article  PubMed  CAS  Google Scholar 

  • Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  PubMed  CAS  Google Scholar 

  • Ritter G, Cohen LS, Williams C Jr, Richards EC, Old LJ, Welt S (2001) Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res 61:6851–6859

    PubMed  CAS  Google Scholar 

  • Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM, Goldmacher VS, Blattler WA, Rees AR, Guild BC (1994) Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Natl Acad Sci USA 91:969–973

    Article  PubMed  CAS  Google Scholar 

  • Roguska MA, Pedersen JT, Henry AH, Searle SM, Roja CM, Avery B, Hoffee M, Cook S, Lambert JM, Blattler WA, Rees AR, Guild BC (1996) A comparison of two murine monoclonal antibodies humanized by CDR-grafting and variable domain resurfacing. Protein Eng 9:895–904

    Article  PubMed  CAS  Google Scholar 

  • Sivasubramanian A, Sircar A, Chaudhury S, Gray JJ (2009) Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins 74:497–514

    Article  PubMed  CAS  Google Scholar 

  • Staelens S, Desmet J, Ngo TH, Vauterin S, Pareyn I, Barbeaux P, Van Rompaey I, Stassen JM, Deckmyn H, Vanhoorelbeke K (2006) Humanization by variable domain resurfacing and grafting on a human IgG4, using a new approach for determination of nonhuman like surface accessible framework residues based on homology modeling of variable domains. Mol Immunol 43:1243–1257

    Article  PubMed  Google Scholar 

  • Verhoeyen M, Milstein C, Winter G (1988) Reshaping human antibodies: grafting an antilysozyme activity. Science 239:1534–1536

    Article  PubMed  CAS  Google Scholar 

  • Wagner CL, Schantz A, Barnathan E, Olson A, Mascelli MA, Ford J, Damaraju L, Schaible T, Maini RN, Tcheng JE (2003) Consequences of immunogenicity to the therapeutic monoclonal antibodies ReoPro and Remicade. Dev Biol (Basel) 112:37–53

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Deckmyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this protocol

Cite this protocol

Desmet, J., Vanhoorelbeke, K., Deckmyn, H. (2010). Humanization by Resurfacing. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01144-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01144-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01143-6

  • Online ISBN: 978-3-642-01144-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics