Skip to main content

Fluorescent Labeling and Confocal Microscopic Imaging of Chloroplasts and Non-green Plastids

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1132))

Abstract

While chlorophyll has served as an excellent label for plastids in green tissue, the development of fluorescent proteins has allowed their ready visualization in all tissues of the plants, revealing new features of their morphology and motility. Gene regulatory sequences in plastid transgenes can be optimized through the use of fluorescent protein reporters. Fluorescent labeling of plastids simultaneously with other subcellular locations reveals dynamic interactions and mutant phenotypes. Transient expression of fluorescent protein fusions is particularly valuable to determine whether or not a protein of unknown function is targeted to the plastid. Particle bombardment and agroinfiltration methods described here are convenient for imaging fluorescent proteins in plant organelles. With proper selection of fluorophores for labeling the components of the plant cell, confocal microscopy can produce extremely informative images at high resolution at depths not feasible by standard epifluorescence microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  2. Wada M (2013) Chloroplast movement. Plant Sci 210:177–182

    Article  CAS  PubMed  Google Scholar 

  3. Kwok EY, Hanson MR (2004) In vivo analysis of interactions between GFP-labeled microfilaments and plastid stromules. BMC Plant Biol 4:2

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kwok EY, Hanson MR (2004) Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep 23:188–195

    Article  CAS  PubMed  Google Scholar 

  5. Bhat RA, Lahaye T, Panstruga R (2006) The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods. Plant Methods 2:12

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wong KA, O’Bryan JP (2011) Bimolecular fluorescence complementation. J Vis Exp 50:2643

    PubMed  Google Scholar 

  7. Vothknecht UC, Soll J (2000) Protein import: the hitchhikers guide into chloroplasts. Biol Chem 381:887–897

    Article  CAS  PubMed  Google Scholar 

  8. Seki M, Iida A, Morikawa H (1998) Transient expression of foreign genes in tissues of Arabidopsis thaliana by bombardment-mediated transformation. Methods Mol Biol 82:219–225

    CAS  PubMed  Google Scholar 

  9. Lee DW, Hwang I (2011) Transient expression and analysis of chloroplast proteins in Arabidopsis protoplasts. Methods Mol Biol 774:59–71

    Article  CAS  PubMed  Google Scholar 

  10. Fischer R, Vaquero-Martin C, Sack M, Drossard J, Emans N, Commandeur U (1999) Towards molecular farming in the future: transient protein expression in plants. Biotechnol Appl Biochem 30:113–116

    CAS  PubMed  Google Scholar 

  11. Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  12. Pawley JB (ed) (1995) Handbook of biological confocal microscopy. Plenum Press, New York

    Google Scholar 

  13. Benediktyova Z, Nedbal L (2009) Imaging of multi-color fluorescence emission from leaf tissues. Photosynth Res 102:169–175

    Article  CAS  PubMed  Google Scholar 

  14. Feijo JA, Moreno N (2004) Imaging plant cells by two-photon excitation. Protoplasma 223:1–32

    Article  PubMed  Google Scholar 

  15. Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  CAS  PubMed  Google Scholar 

  16. Franklin S, Ngo B, Efuet E, Mayfield SP (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30:733–744

    Article  CAS  PubMed  Google Scholar 

  17. Reed ML, Wilson SK, Sutton CA, Hanson MR (2001) High-level expression of a synthetic red-shifted GFP coding region incorporated into transgenic chloroplasts. Plant J 27:257–265

    Article  CAS  PubMed  Google Scholar 

  18. Millwood RJ, Moon HS, Stewart CNJ (2008) Fluorescent proteins in transgenic plants. In: Geddes CD (ed) Reviews in fluorescence 2008. Springer, New York, pp 387–403

    Google Scholar 

  19. Primavesi LF, Wu H, Mudd EA, Day A, Jones HD (2008) Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins. Transgenic Res 17:529–543

    Article  CAS  PubMed  Google Scholar 

  20. Pyke KA (2013) Divide and shape: an endosymbiont in action. Planta 237:381–387

    Article  CAS  PubMed  Google Scholar 

  21. Hanson MR, Sattarzadeh A (2008) Dynamic morphology of plastids and stromules in angiosperm plants. Plant Cell Environ 31:646–657

    Article  PubMed  Google Scholar 

  22. Kwok EY, Hanson MR (2004) Stromules and the dynamic nature of plastid morphology. J Microsc 214:124–137

    Article  CAS  PubMed  Google Scholar 

  23. Natesan SK, Sullivan JA, Gray JC (2005) Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56:787–797

    Article  CAS  PubMed  Google Scholar 

  24. Kohler RH, Zipfel WR, Webb WW, Hanson MR (1997) The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J 11:613–621

    Article  CAS  PubMed  Google Scholar 

  25. Fang Y, Spector DL (2010) Live cell imaging of plants. Cold Spring Harb Protoc 2012, pdb top68

    Google Scholar 

  26. Groover A, Jackson D (2007) Live-cell imaging of GFP in plants. CSH protocols 2007, pdb ip31

    Google Scholar 

  27. Ross FWD (1995) Fluorescence microscopy, vol 2. Cambridge University Press, Cambridge, England

    Google Scholar 

  28. Berg RH, Beachy RN (2008) Fluorescent protein applications in plants. Methods Cell Biol 85:153–177

    Article  CAS  PubMed  Google Scholar 

  29. Geddes CD (ed) (2008/2010) Reviews in fluorescence 2008/2010, vol 2008/2010. Springer, New York

    Google Scholar 

  30. Mathur J (2007) The illuminated plant cell. Trends Plant Sci 12:506–513

    Article  CAS  PubMed  Google Scholar 

  31. Shaw SL, Ehrhardt DW (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol 64:351–375

    Article  CAS  PubMed  Google Scholar 

  32. Coleman AW (1979) Use of the fluorochrome 4′6-diamidino-2-phenylindole in genetic and developmental studies of chloroplast DNA. J Cell Biol 82:299–305

    Article  CAS  PubMed  Google Scholar 

  33. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91

    Article  CAS  PubMed  Google Scholar 

  34. Nienhaus GU, Nienhaus K, Holzle A, Ivanchenko S, Renzi F, Oswald F, Wolff M, Schmitt F, Rocker C, Vallone B, Weidemann W, Heilker R, Nar H, Wiedenmann J (2006) Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82:351–358

    Article  CAS  PubMed  Google Scholar 

  35. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260

    Article  CAS  PubMed  Google Scholar 

  36. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

  37. Dixit R, Cyr R, Gilroy S (2006) Using intrinsically fluorescent proteins for plant cell imaging. Plant J 45:599–615

    Article  CAS  PubMed  Google Scholar 

  38. Lippincott-Schwartz J, Patterson GH (2008) Fluorescent proteins for photoactivation experiments. Methods Cell Biol 85:45–61

    Article  CAS  PubMed  Google Scholar 

  39. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19:555–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mohanty A, Yang Y, Luo A, Sylvester AW, Jackson D (2009) Methods for generation and analysis of fluorescent protein-tagged maize lines. Methods Mol Biol 526:71–89

    Article  CAS  PubMed  Google Scholar 

  42. Tsien RY (2009) Indicators based on fluorescence resonance energy transfer (FRET). Cold Spring Harb Protoc 2009, pdb top57

    Google Scholar 

  43. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GP (2012) Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047–4132

    Article  CAS  PubMed  Google Scholar 

  44. Padilla-Parra S, Tramier M (2012) FRET microscopy in the living cell: different approaches, strengths and weaknesses. BioEssays 34:369–376

    Article  PubMed  Google Scholar 

  45. Robitaille M, Heroux I, Baragli A, Hebert TE (2009) Novel tools for use in bioluminescence resonance energy transfer (BRET) assays. Methods Mol Biol 574:215–234

    Article  CAS  PubMed  Google Scholar 

  46. Subramanian C, Woo J, Cai X, Xu X, Servick S, Johnson CH, Nebenfuhr A, von Arnim AG (2006) A suite of tools and application notes for in vivo protein interaction assays using bioluminescence resonance energy transfer (BRET). Plant J 48:138–152

    Article  CAS  PubMed  Google Scholar 

  47. Subramanian C, Xu Y, Johnson CH, von Arnim AG (2004) In vivo detection of protein-protein interaction in plant cells using BRET. Methods Mol Biol 284:271–286

    CAS  PubMed  Google Scholar 

  48. Xu X, Soutto M, Xie Q, Servick S, Subramanian C, von Arnim AG, Johnson CH (2007) Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci U S A 104:10264–10269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gremillon L, Kiessling J, Hause B, Decker EL, Reski R, Sarnighausen E (2007) Filamentous temperature-sensitive Z (FtsZ) isoforms specifically interact in the chloroplasts and in the cytosol of Physcomitrella patens. New Phytol 176:299–310

    Article  PubMed  Google Scholar 

  50. Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D (2004) Colocalization and FRET-analysis of subunits c and a of the vacuolar H + -ATPase in living plant cells. J Biotechnol 112:165–175

    Article  CAS  PubMed  Google Scholar 

  51. Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53

    CAS  PubMed  Google Scholar 

  52. Behera S, Kudla J (2013) High-resolution imaging of cytoplasmic Ca2+ dynamics in Arabidopsis roots. Cold Spring Harb. Protoc 2013(7). pii: pdb.prot073023. doi: 10.1101/pdb.prot073023.

  53. Swanson SJ, Gilroy S (2013) Imaging changes in cytoplasmic calcium using the Yellow Cameleon 3.6 biosensor and confocal microscopy. Methods Mol Biol 1009:291–302

    Article  CAS  PubMed  Google Scholar 

  54. Wanke D, Hohenstatt ML, Dynowski M, Bloss U, Hecker A, Elgass K, Hummel S, Hahn A, Caesar K, Schleifenbaum F, Harter K, Berendzen KW (2011) Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus. PloS One 6:e16070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Seidel T, Seefeldt B, Sauer M, Dietz KJ (2010) In vivo analysis of the 2-Cys peroxiredoxin oligomeric state by two-step FRET. J Biotechnol 149:272–279

    Article  CAS  PubMed  Google Scholar 

  56. Bucherl C, Aker J, de Vries S, Borst JW (2010) Probing protein-protein Interactions with FRET-FLIM. Methods Mol Biol 655:389–399

    Article  PubMed  Google Scholar 

  57. Wolf H, Barisas BG, Dietz KJ, Seidel T (2013) Kaede for detection of protein oligomerization. Mol Plant. doi:10.1093/mp/sst039

    PubMed  Google Scholar 

  58. Zhang M, Hu Y, Jia J, Gao H, He Y (2009) A plant MinD homologue rescues Escherichia coli HL1 mutant (DeltaMinDE) in the absence of MinE. BMC Microbiol 9:101

    Article  PubMed Central  PubMed  Google Scholar 

  59. Citovsky V, Lee LY, Vyas S, Glick E, Chen MH, Vainstein A, Gafni Y, Gelvin SB, Tzfira T (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    Article  CAS  PubMed  Google Scholar 

  60. Citovsky V, Gafni Y, Tzfira T (2008) Localizing protein-protein interactions by bimolecular fluorescence complementation in planta. Methods 45:196–206

    Article  CAS  PubMed  Google Scholar 

  61. Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T (2010) A plastid-targeted heat shock cognate 70 kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 401:6–17

    Article  CAS  PubMed  Google Scholar 

  62. Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Jones AM, Grossmann G, Danielson JA, Sosso D, Chen LQ, Ho CH, Frommer WB (2013) In vivo biochemistry: applications for small molecule biosensors in plant biology. Curr Opin Plant Biol 16:389–395

    Article  CAS  PubMed  Google Scholar 

  64. Lalonde S, Ehrhardt DW, Frommer WB (2005) Shining light on signaling and metabolic networks by genetically encoded biosensors. Curr Opin Plant Biol 8:574–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  PubMed  Google Scholar 

  66. Jiang K, Schwarzer C, Lally E, Zhang S, Ruzin S, Machen T, Remington SJ, Feldman L (2006) Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 141:397–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lindbo JA (2007) High-efficiency protein expression in plants from agroinfection-compatible tobacco mosaic virus expression vectors. BMC Biotechnol 7:52

    Article  PubMed Central  PubMed  Google Scholar 

  68. Lindbo JA (2007) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145:1232–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    Article  CAS  PubMed  Google Scholar 

  70. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  PubMed  Google Scholar 

  71. Miao Y, Jiang L (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat Protoc 2:2348–2353

    Article  CAS  PubMed  Google Scholar 

  72. Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  73. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  74. Hellwege EM, Raap M, Gritscher D, Willmitzer L, Heyer AG (1998) Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett 427:25–28

    Article  CAS  PubMed  Google Scholar 

  75. Li JF, Park E, von Arnim AG, Nebenfuhr A (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6

    Article  PubMed Central  PubMed  Google Scholar 

  76. Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lombardi R, Circelli P, Villani ME, Buriani G, Nardi L, Coppola V, Bianco L, Benvenuto E, Donini M, Marusic C (2009) High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus. BMC Biotechnol 9:96

    Article  PubMed Central  PubMed  Google Scholar 

  78. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

  79. Dhillon T, Chiera JM, Lindbo JA, Finer JJ (2009) Quantitative evaluation of six different viral suppressors of silencing using image analysis of transient GFP expression. Plant Cell Rep 28:639–647

    Article  CAS  PubMed  Google Scholar 

  80. Chiera JM, Lindbo JA, Finer JJ (2008) Quantification and extension of transient GFP expression by the co-introduction of a suppressor of silencing. Transgenic Res 17:1143–1154

    Article  CAS  PubMed  Google Scholar 

  81. Sattarzadeh A, Krahmer J, Germain AD, Hanson MR (2009) A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana. Mol Plant 2:1351–1358

    Article  CAS  PubMed  Google Scholar 

  82. Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques 26(1125):1128–1132

    Google Scholar 

  83. Xiao YL, Redman JC, Monaghan EL, Zhuang J, Underwood BA, Moskal WA, Wang W, Wu HC, Town CD (2010) High throughput generation of promoter reporter (GFP) transgenic lines of low expressing genes in Arabidopsis and analysis of their expression patterns. Plant Methods 6:18

    Article  PubMed Central  PubMed  Google Scholar 

  84. Xu R, Li QQ (2008) Protocol: streamline cloning of genes into binary vectors in agrobacterium via the gateway(R) TOPO vector system. Plant Methods 4:4

    Article  PubMed Central  PubMed  Google Scholar 

  85. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  87. Tzfira T, Tian GW, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57:503–516

    Article  CAS  PubMed  Google Scholar 

  88. Kagale S, Uzuhashi S, Wigness M, Bender T, Yang W, Borhan MH, Rozwadowski K (2012) TMV-Gate vectors: gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins. Sci Rep 2:874

    Article  PubMed Central  PubMed  Google Scholar 

  89. Dubin MJ, Bowler C, Benvenuto G (2010) Overexpressing tagged proteins in plants using a modified gateway cloning strategy. Cold Spring Harb Protoc 2010, pdb prot5401. doi: 10.1101/pdb.prot5401.

  90. Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  91. Koncz C, Schel l J (1986) The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  92. Wise AA, Liu Z, Binns AN (2006) Culture and maintenance of agrobacterium strains. Methods Mol Biol 343:3–13

    PubMed  Google Scholar 

  93. Lee MW, Yang Y (2006) Transient expression assay by agroinfiltration of leaves. Methods Mol Biol 323:225–229

    PubMed  Google Scholar 

  94. Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151

    Article  CAS  PubMed  Google Scholar 

  95. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94:2122–2127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Hawes C, Brandizzi F, Batoko H, Moore I (2001) Organelle motility in plant cells: imaging golgi and ER dynamics with GFP. Curr Protoc Cell Biol 13:13.3.1–13.3.10. doi:10.1002/0471143030.cb0107s19

    Google Scholar 

  97. Sheahan MB, Staiger CJ, Rose RJ, McCurdy DW (2004) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136:3968–3978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Hanson MR, Sattarzadeh A (2011) Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant Physiol 155:1486–1492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Holzinger A, Buchner O, Lutz C, Hanson MR (2007) Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana. Protoplasma 230:23–30

    Article  CAS  PubMed  Google Scholar 

  100. Kohler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042

    Article  CAS  PubMed  Google Scholar 

  101. Sattarzadeh A, Fuller J, Moguel S, Wostrikoff K, Sato S, Covshoff S, Clemente T, Hanson M, Stern DB (2010) Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastids. Plant Biotechnol J 8:112–125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy to M.R.H., including DE-89-ER14030 and DE–FG02–09ER16070.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hanson, M.R., Sattarzadeh, A. (2014). Fluorescent Labeling and Confocal Microscopic Imaging of Chloroplasts and Non-green Plastids. In: Maliga, P. (eds) Chloroplast Biotechnology. Methods in Molecular Biology, vol 1132. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-995-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-995-6_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-994-9

  • Online ISBN: 978-1-62703-995-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics