Skip to main content

X-Ray Microscopy for Neuroscience: Novel Opportunities by Coherent Optics

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

Abstract

X-ray microscopy and tomography can provide the three-dimensional density distribution within cells and tissues without staining and slicing. In addition, chemical information—i.e. the elemental distribution—can be retrieved by X-ray spectro-microscopy based on contrast variation around photon absorption edges and X-ray fluorescence. For a long time, X-ray microscopy has been limited in resolution by the fabrication of zone plate lenses, in particular for the hard X-ray range, which is needed to penetrate multicellular samples. Recent progress in X-ray optics and lensless coherent imaging now pave the way for enhanced imaging tools in neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeiffer F, Kottler C, Bunk O, David C (2007) Hard x-ray phase tomography with low-brilliance sources. Phys Rev Lett 98:108105

    Article  CAS  PubMed  Google Scholar 

  2. Bartels M, Hernandez VH, Krenkel M, Moser T, Salditt T (2013) Phase contrast tomography of the mouse cochlea at microfocus x-ray sources. Appl Phys Lett 103:083703

    Article  Google Scholar 

  3. Als-Nielsen J, McMorrow D (2001) Elements of modern X-ray physics. Wiley, London

    Google Scholar 

  4. Attwood DT (2000) Soft X-rays and extreme ultraviolet radiation: principles and applications. Cambridge University Press, Cambridge

    Google Scholar 

  5. Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213

    Article  CAS  PubMed  Google Scholar 

  6. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  7. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) Sted microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    Article  CAS  PubMed  Google Scholar 

  8. Giewekemeyer K, Thibault P, Kalbfleisch S, Beerlink A, Kewish CM, Dierolf M, Pfeiffer F, Salditt T (2010) Quantitative biological imaging by ptychographic x-ray diffraction microscopy. Proc Natl Acad Sci 107:529–534

    Article  CAS  PubMed  Google Scholar 

  9. Schmahl G, Rudolph D, Niemann B, Christ O (1980) Zone-plate x-ray microscopy. Q Rev Biophys 13:297–315

    Article  CAS  PubMed  Google Scholar 

  10. Kirz J, Jacobsen C, Howells M (1995) Soft x-ray microscopes and their biological applications. Q Rev Biophys 28:33–130

    Article  CAS  PubMed  Google Scholar 

  11. Chao W, Harteneck BD, Liddle JA, Anderson EH, Attwood DT (2005) Soft x-ray microscopy at a spatial resolution better than 15 nm. Nature 435:1210–1213

    Article  CAS  PubMed  Google Scholar 

  12. Hornberger B, Feser M, Jacobsen C (2007) Quantitative amplitude and phase contrast imaging in a scanning transmission x-ray microscope. Ultramicroscopy 107:644–655

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, McRae R, Henary M, Patel R, Lai B, Vogt S, Fahrni C (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy. Proc Natl Acad Sci USA 102:11179

    Article  CAS  PubMed  Google Scholar 

  14. Larabell C, Le Gros M (2004) X-ray tomography generates 3-d reconstructions of the yeast, saccharomyces cerevisiae, at 60-nm resolution. Mol Biol Cell 15:957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Weiss D, Schneider G, Niemann B, Guttmann P, Rudolph D, Schmahl G et al (2000) Computed tomography of cryogenic biological specimens based on x-ray microscopic images. Ultramicroscopy 84:185–197

    Article  CAS  PubMed  Google Scholar 

  16. Miao J, Charalambous P, Kirz J, Sayre D (1999) Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400:342–344

    Article  CAS  Google Scholar 

  17. Williams G, Pfeifer M, Vartanyants I, Robinson I (2003) Three-dimensional imaging of microstructure in au nanocrystals. Phys Rev Lett 90:175501

    Article  CAS  PubMed  Google Scholar 

  18. Williams GJ, Quiney HM, Dhal BB, Tran CQ, Nugent KA, Peele AG, Paterson D, de Jonge MD (2006) Fresnel coherent diffractive imaging. Phys Rev Lett 97:025506

    Article  CAS  PubMed  Google Scholar 

  19. Miao J, Hodgson KO, Ishikawa T, Larabell CA, LeGros MA, Nishino Y (2003) Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction. Proc Natl Acad Sci 100:110–112

    Article  CAS  PubMed  Google Scholar 

  20. Shapiro D, Thibault P, Beetz T, Elser V, Howells M, Jacobsen C, Kirz J, Lima E, Miao H, Neiman AM, Sayre D (2005) Biological imaging by soft x-ray diffraction microscopy. Proc Natl Acad Sci 102:15343–15346

    Article  CAS  PubMed  Google Scholar 

  21. Song C, Jiang H, Mancuso A, Amirbekian B, Peng L, Sun R, Shah SS, Zhou ZH, Ishikawa T, Miao J (2008) Quantitative imaging of single, unstained viruses with coherent x rays. Phys Rev Lett 101:158101

    Article  PubMed  Google Scholar 

  22. Nishino Y, Takahashi Y, Imamoto N, Ishikawa T, Maeshima K (2009) Three-dimensional visualization of a human chromosome using coherent x-ray diffraction. Phys Rev Lett 102:018101

    Article  PubMed  Google Scholar 

  23. Fahrni C (2007) Biological applications of x-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11:121–127

    Article  CAS  PubMed  Google Scholar 

  24. Schroer CG, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, van der Hart A, Kuchler M (2005) Hard x-ray nanoprobe based on refractive x-ray lenses. Appl Phys Lett 87:3 (124103)

    Google Scholar 

  25. Hignette O, Cloetens P, Rostaing G, Bernard P, Morawe C (2005) Efficient sub 100 nm focusing of hard x rays. Rev Sci Instrum 76:063709

    Article  Google Scholar 

  26. Mimura H, Handa S, Kimura T, Yumoto H, Yamakawa D, Yokoyama H, Matsuyama S, Inagaki K, Yamamura K, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K (2010) Breaking the 10 nm barrier in hard-x-ray focusing. Nat Phys 6:122–125

    Article  CAS  Google Scholar 

  27. Bergemann C, Keymeulen H, van der Veen JF (2003) Focusing X-ray beams to nanometer dimensions. Phys Rev Lett 91:204801

    Article  CAS  PubMed  Google Scholar 

  28. Ruhlandt A, Liese T, Radisch V, Krüger SP, Osterhoff M, Giewekemeyer K, Krebs HU, Salditt T (2012) A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10 nm x-ray focusing. AIP Adv 2:7 (012175)

    Google Scholar 

  29. Yan H, Rose V, Shu D, Lima E, Kang H, Conley R, Liu C, Jahedi N, Macrander A, Stephenson G et al (2011) Two dimensional hard x-ray nanofocusing with crossed multilayer laue lenses. Opt Express 19:15069–15076

    Article  CAS  PubMed  Google Scholar 

  30. Rehbein S, Heim S, Guttmann P, Werner S, Schneider G (2009) Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction. Phys Rev Lett 103:110801

    Article  CAS  PubMed  Google Scholar 

  31. Vila-Comamala J, Gorelick S, Färm E, Kewish CM, Diaz A, Barrett R, Guzenko VA, Ritala M, David C (2011) Ultra-high resolution zone-doubled diffractive x-ray optics for the multi-kev regime. Opt Express 19:175–184

    Article  CAS  PubMed  Google Scholar 

  32. Krüger SP, Giewekemeyer K, Kalbfleisch S, Bartels M, Neubauer H, Salditt T (2010) Sub-15 nm beam confinement by twocrossed x-ray waveguides. Opt. Express 18:13492–13501

    Article  PubMed  Google Scholar 

  33. Osterhoff M, Salditt T (2011) Coherence filtering of x-ray waveguides: analytical and numerical approach. New J Phys 13:103026

    Article  Google Scholar 

  34. Bartels M, Priebe M, Wilke R, Kruger S, Giewekemeyer K, Kalbfleisch S, Olendrowits C, Sprung M, Salditt T (2012) Low-dose three-dimensional hard x-ray imaging of bacterial cells. Opt Nanoscopy 1:10

    Google Scholar 

  35. Krenkel M, Bartels M, Salditt T (2013) Transport of intensity phase reconstruction to solve the twin image problem in holographic x-ray imaging. Opt Express 21:2220–2235

    Article  CAS  PubMed  Google Scholar 

  36. Jarre A, Fuhse C, Ollinger C, Seeger J, Tucoulou R, Salditt T (2005) Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics. Phys Rev Lett 94:074801

    Article  CAS  PubMed  Google Scholar 

  37. Kruger S, Neubauer H, Bartels M, Kalbfleisch S, Giewekemeyer K, Wilbrandt P, Sprung M, Salditt T (2012) Sub-10 nm beam confinement by x-ray waveguides: design, fabrication and characterization of optical properties. J Synchrotron Radiat 19:227–236

    Article  CAS  PubMed  Google Scholar 

  38. Giewekemeyer K, Krüger SP, Kalbfleisch S, Bartels M, Beta C, Salditt T (2011) X-ray propagation microscopy of biological cells using waveguides as a quasipoint source. Phys Rev A 83:023804

    Article  Google Scholar 

  39. Howells M, Beetz T, Chapman H, Cui C, Holton J, Jacobsen C, Kirz J, Lima E, Marchesini S, Miao H, Sayre D, Shapiro D, Spence J, Starodub D (2009) An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. J Electron Spectrosc Related Phenomena 170:4–12

    Article  CAS  Google Scholar 

  40. Schneider G (1998) Cryo x-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy 75:85

    Article  CAS  PubMed  Google Scholar 

  41. Carmona A, Cloetens P, Devès G, Bohic S, Ortega R (2008) Nano-imaging of trace metals by synchrotron x-ray fluorescence into dopaminergic single cells and neurite-like processes. J Anal At Spectrom 23:1083–1088

    Article  CAS  Google Scholar 

  42. Dučić T, Quintes S, Nave K, Susini J, Rak M, Tucoulou R, Alevra M, Guttmann P, Salditt T (2011) Structure and composition of myelinated axons: a multimodal synchrotron spectro-microscopy study. J Struct Biol 173:202–212

    Article  PubMed  Google Scholar 

  43. Schmahl G, Rudolph D, Guttmann P, Schneider G, Thieme J, Niemann B (1995) Phase contrast studies of biological specimens with the x-ray microscope at bessy (invited). Rev Sci Instrum 66:1282–1286

    Article  CAS  Google Scholar 

  44. Bertilson M, von Hofsten O, Vogt U, Holmberg A, Christakou AE, Hertz HM (2011) Laboratory soft-x-ray microscope for cryotomography of biological specimens. Opt Lett 36:2728–2730

    Article  PubMed  Google Scholar 

  45. Schneider G, Guttmann P, Heim S, Rehbein S, Mueller F, Nagashima K, Heymann JB, Müller WG, McNally JG (2010) Three-dimensional cellular ultrastructure resolved by x-ray microscopy. Nat Methods 7:985–987

    Article  CAS  PubMed  Google Scholar 

  46. Larabell CA, Nugent KA (2010) Imaging cellular architecture with x-rays. Curr Opin Struct Biol 20:623–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Uchida M, McDermott G, Wetzler M, Le Gros MA, Myllys M, Knoechel C, Barron AE, Larabell CA (2009) Soft x-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in candida albicans. Proc Natl Acad Sci 106:19375–19380

    Article  CAS  PubMed  Google Scholar 

  48. Bohic S, Murphy K, Paulus W, Cloetens P, Salomé M, Susini J, Double K (2008) Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron x-ray microspectroscopy. Anal Chem 80:9557–9566

    Article  CAS  PubMed  Google Scholar 

  49. Szczerbowska-Boruchowska M (2008) X-ray fluorescence spectrometry, an analytical tool in neurochemical research. X-Ray Spectrom 37:21–31

    Article  CAS  Google Scholar 

  50. Crichton R, Ward R (2005) Metal-based neurodegeneration: from molecular mechanisms to therapeutic strategies. Wiley, London

    Book  Google Scholar 

  51. Dodani S, Domaille D, Nam C, Miller E, Finney L, Vogt S, Chang C (2011) Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy. Proc Natl Acad Sci 108:5980

    Article  CAS  PubMed  Google Scholar 

  52. Bohic S, Cotte M, Salomé M, Fayard B, Kuehbacher M, Cloetens P, Martinez-Criado G, Tucoulou R, Susini J (2011) Biomedical applications of the esrf synchrotron-based microspectroscopy platform. J Struct Biol 177:248–258

    Article  PubMed  Google Scholar 

  53. James S, Myers D, de Jonge M, Vogt S, Ryan C, Sexton B, Hoobin P, Paterson D, Howard D, Mayo S et al (2011) Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue. Anal Bioanal Chem 401:1–12

    Article  Google Scholar 

  54. Bacquart T, Deves G, Carmona A, Tucoulou R, Bohic S, Ortega R (2007) Subcellular speciation analysis of trace element oxidation states using synchrotron radiation micro-x-ray absorption near-edge structure. Anal Chem 79:7353–7359

    Article  CAS  PubMed  Google Scholar 

  55. Vogt S, Maser J, Jacobsen C (2003) Data analysis for x-ray fluorescence imaging. J Phys IV France 104:617–622

    Article  CAS  Google Scholar 

  56. Cloetens P, Ludwig W, Baruchel J, Dyck DV, Landuyt JV, Guigay JP, Schlenker M (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl Phys Lett 75:2912–2914

    Article  CAS  Google Scholar 

  57. Cloetens P, Mache R, Schlenker M, Lerbs-Mache S (2006) Quantitative phase tomography of arabidopsis seeds reveals intercellular void network. Proc Natl Acad Sci 103:14626–14630

    Article  CAS  PubMed  Google Scholar 

  58. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard x-rays. Nature 384:335–338

    Article  CAS  Google Scholar 

  59. Mayo S, Miller P, Wilkins S, Davis T, Gao D, Gureyev T, Paganin D, Parry D, Pogany A, Stevenson A (2002) Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging. J Microsc 207:79–96

    Article  CAS  PubMed  Google Scholar 

  60. Gureyev TE, Mayo SC, Myers DE, Nesterets Y, Paganin DM, Pogany A, Stevenson AW, Wilkins SW (2009) Refracting röntgen’s rays: propagation-based x-ray phase contrast for biomedical imaging. J Appl Phys 105:102005

    Article  Google Scholar 

  61. Abbey B, Nugent KA, Williams GJ, Clark JN, Peele AG, Pfeifer MA, de Jonge M, McNulty I (2008) Keyhole coherent diffractive imaging. Nat Phys 4:394–398

    Article  CAS  Google Scholar 

  62. Williams GJ, Quiney HM, Peele AG, Nugent KA (2010) Fresnel coherent diffractive imaging: treatment and analysis of data. New J Phys 12:035020

    Article  Google Scholar 

  63. Giewekemeyer K, Neubauer H, Kalbfleisch S, Krüger SP, Salditt T (2010) Holographic and diffractive x-ray imaging using waveguides as quasi-point sources. New J Phys 12:035008

    Article  Google Scholar 

  64. Nugent KA (2010) Coherent methods in the x-ray sciences. Adv Phys 59:1–99

    Article  Google Scholar 

  65. Quiney H (2010) Coherent diffractive imaging using short wavelength light sources. J Mod Optic 57:1109–1149

    Article  Google Scholar 

  66. Paganin DM (2006) Coherent X-ray optics. Oxford University Press, Oxford

    Book  Google Scholar 

  67. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758–2769

    Article  CAS  PubMed  Google Scholar 

  68. Marchesini S (2007) Invited article: a unified evaluation of iterative projection algorithms for phase retrieval. Rev Sci Instrum 78:011301

    Article  CAS  PubMed  Google Scholar 

  69. Rodenburg JM, Hurst AC, Cullis AG, Dobson BR, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I (2007) Hard-x-ray lensless imaging of extended objects. Phys Rev Lett 98:034801

    Article  CAS  PubMed  Google Scholar 

  70. Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F (2008) High-resolution scanning x-ray diffraction microscopy. Science 321:379–382

    Article  CAS  PubMed  Google Scholar 

  71. Guizar-Sicairos M, Fienup JR (2008) Phase retrieval with transverse translation diversity: a nonlinearoptimization approach. Opt Express 16:7264–7278

    Article  PubMed  Google Scholar 

  72. Schropp A, Boye P, Feldkamp JM, Hoppe R, Patommel J, Samberg D, Stephan S, Giewekemeyer K, Wilke RN, Salditt T, Gulden J, Mancuso AP, Vartanyants IA, Weckert E, Schoder S, Burghammer M, Schroer CG (2010) Hard x-ray nanobeam characterization by coherent diffraction microscopy. Appl Phys Lett 96:3 (091102)

    Google Scholar 

  73. Kewish CM, Thibault P, Dierolf M, Bunk O, Menzel A, Vila-Comamala J, Jefimovs K, Pfeiffer F (2010) Ptychographic characterization of the wavefield in the focus of reflective hard x-ray optics. Ultramicroscopy 110:325–329

    Article  CAS  PubMed  Google Scholar 

  74. Giewekemeyer K, Beckers M, Gorniak T, Grunze M, Salditt T, Rosenhahn A (2011) Ptychographic coherent x-ray diffractive imaging in the water window. Opt Express 19:1037–1050

    Article  CAS  PubMed  Google Scholar 

  75. Beckers M, Senkbeil T, Gorniak T, Reese M, Giewekemeyer K, Gleber S, Salditt T, Rosenhahn A (2011) Chemical contrast in soft x-ray ptychography. Phys Rev Lett 107:208101

    Article  PubMed  Google Scholar 

  76. Takahashi Y (2011) Multiscale element mapping of buried structures by ptychographic x-ray diffraction microscopy using anomalous scattering. Appl Phys Lett 99:131905

    Article  Google Scholar 

  77. Eisebitt S, Luning J, Schlotter WF, Lorgen M, Hellwig O, Eberhardt W, Stohr J (2004) Lensless imaging of magnetic nanostructures by x-ray spectro-holography. Nature 432: 885–888

    Article  CAS  PubMed  Google Scholar 

  78. Fuhse C, Ollinger C, Salditt T (2006) Waveguide-based off-axis holography with hard x rays. Phys Rev Lett 97:254801

    Article  CAS  PubMed  Google Scholar 

  79. Salditt T, Krüger S, Fuhse C, Bähtz C (2008) High-transmission planar x-ray waveguides. Phys Rev Lett 100:184801

    Article  CAS  PubMed  Google Scholar 

  80. Jiang H, Song C, Chen C-C, Xu R, Raines KS, Fahimian BP, Lu C-H, Lee T-K, Nakashima A, Urano J, Ishikawa T, Tamanoi F, Miao J (2010) Quantitative 3d imaging of whole, unstained cells by using x-ray diffraction microscopy. Proc Natl Acad Sci 107:11234–11239

    Article  CAS  PubMed  Google Scholar 

  81. Nelson J, Huang X, Steinbrener J, Shapiro D, Kirz J, Marchesini S, Neiman AM, Turner JJ, Jacobsen C (2010) High-resolution x-ray diffraction microscopy of specifically labeled yeast cells. Proc Natl Acad Sci 107:7235–7239

    Article  CAS  PubMed  Google Scholar 

  82. Lima E, Wiegart L, Pernot P, Howells M, Timmins J, Zontone F, Madsen A (2009) Cryogenic x-ray diffraction microscopy for biological samples. Phys Rev Lett 103:198102

    Article  PubMed  Google Scholar 

  83. Huang X, Nelson J, Kirz J, Lima E, Marchesini S, Miao H, Neiman AM, Shapiro D, Steinbrener J, Stewart A, Turner JJ, Jacobsen C (2009) Soft x-ray diffraction microscopy of a frozen hydrated yeast cell. Phys Rev Lett 103:198101

    Article  PubMed Central  PubMed  Google Scholar 

  84. Wilke RN, Priebe M, Bartels M, Giewekemeyer K, Diaz A, Karvinen P, Salditt T (2012) Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction. Opt Express 20:19232–19254

    Article  CAS  PubMed  Google Scholar 

  85. Takamori S, Holt M, Stenius K, Lemke E, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  PubMed  Google Scholar 

  86. Castorph S, Riedel D, Arleth L, Sztucki M, Jahn R, Holt M, Salditt T (2010) Structure parameters of synaptic vesicles quantified by small-angle x-ray scattering. Biophys J 98:1200–1208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Ghosh S, Castorph S, Konovalov O, Jahn R, Holt M, Salditt T (2010) In vitro study of interaction of synaptic vesicles with lipid membranes. New J Phys 12:105004

    Article  Google Scholar 

  88. Pfeiffer F, Kottler C, Bunk O, David C (2012) Measuring ca2+-induced structural changes in lipid monolayers: implications for synaptic vesicle exocytosis. Biophys J 102:1394–1402

    Article  Google Scholar 

  89. Aeffner S, Reusch T, Weinhausen B, Salditt T (2012) Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc Natl Acad Sci 109:E1609–E1618

    Article  CAS  PubMed  Google Scholar 

  90. Beerlink A, Mell M, Tolkiehn M, Salditt T (2009) Hard x-ray phase contrast imaging of black lipid membranes. Appl Phys Lett 95:203703

    Article  Google Scholar 

  91. Beerlink A, Shashi Thutupalli S, Mell M, Bartels M, Cloetens P, Herminghaus S, Salditt T (2012) X-ray propagation imaging of a lipid bilayer in solution. Soft Matter 8:4595–4601

    Article  Google Scholar 

  92. Fratzl P, Jakob HF, Rinnerthaler S, Roschger P, Klaushofer K (1997) Position-resolved small-angle x-ray scattering of complex biological materials. J Appl Cryst 30:765–769

    Article  CAS  Google Scholar 

  93. Jensen T, Bech M, Bunk O, Menzel A, Bouchet A, Le Duc G, Feidenhans’l R, Pfeiffer F (2011) Molecular x-ray computed tomography of myelin in a rat brain. NeuroImage 57:124–129

    Article  CAS  PubMed  Google Scholar 

  94. Weinhausen B, Nolting J-F, Olendrowitz C, Langfahl-Klabes J, Reynolds M, Salditt T, K ̈oster S (2012) X-ray nano-diffraction on cytoskeletal networks. New J Phys 14:085013

    Google Scholar 

  95. Quarles R, Macklin W, Morell P (2006) Myelin formation, structure, and biochemistry. Academic, London

    Google Scholar 

  96. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    CAS  PubMed  Google Scholar 

  97. Siegel G (2006) Basic neurochemistry: molecular, cellular and medical aspects. Elsevier Academic

    Google Scholar 

  98. Blaurock AE (1976) Myelin x-ray patterns reconciled. Biophys J 16:491–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Kirschner D, Blaurock A (1992) Organization, phylogenetic variations, and dynamic transitions of myelin. In: Martinson RE (ed.), Myelin: biology and chemistry. CRC Press, Boca Raton, pp. 3–80

    Google Scholar 

  100. Chance PF (2001) Molecular basis of hereditary neuropathies. Phys Med Rehabil Clin N Am 12:277–291

    CAS  PubMed  Google Scholar 

  101. Fratzl P (2003) Small-angle scattering in materials science - a short review of applications in alloys, ceramics and composite materials. J Appl Crystallogr 36:397–404

    Article  CAS  Google Scholar 

  102. Aichmayer B, Margolis H, Sigel R, Yamakoshi Y, Simmer J, Fratzl P (2005) The onset of amelogenin nanosphere aggregation studied by small-angle x-ray scattering and dynamic light scattering. J Struct Biol 151:239–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all of our collaborators on the original work reviewed here, in particular Simon Castorph, Sajal Ghosh, André Beelink, Klaus Giewekemeyer, Robin Wilke, and Matthias Bartels. We are thankful to the European Synchrotron Radiation Facility (ESRF), the Swiss Light Source (SLS) and Desy Photon Science, Hamburg, for generous beam time allocation and the financial support by DFG Research Center 103 Molecular Physiology of the Brain (CMPB) within the Cluster of Excellence 171 “Microscopy at the Nanometer Range,” Germany.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Salditt, T., Dučić, T. (2014). X-Ray Microscopy for Neuroscience: Novel Opportunities by Coherent Optics. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics