Skip to main content

Efficient Splinted Ligation of Synthetic RNA Using RNA Ligase

  • Protocol
  • First Online:
Spliceosomal Pre-mRNA Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1126))

Abstract

RNA ligation allows the creation of large RNA molecules from smaller pieces. This can be useful in a number of contexts: to generate molecules that are larger than can be directly synthesized; to incorporate site-specific changes or RNA modifications within a large RNA in order to facilitate functional and structural studies; to isotopically label segments of large RNAs for NMR structural studies; and to construct libraries of mutant RNAs in which one region is extensively mutagenized or modified. The impediment to widespread use of RNA ligation is the low and variable efficiency of standard ligation strategies, which frequently preclude joining more than two pieces of RNA together.

We describe a method using RNA ligase (Rligation), rather than DNA ligase (Dligation), in a splint-mediated ligation reaction that joins RNA molecules with high efficiency. RNA ligase recognizes single-stranded RNA ends, which are held in proximity to one another by the splint. Monitoring the reaction is easily accomplished by denaturing gel electrophoresis and ethidium bromide staining. Using this technique, it is possible to generate a wide range of modified RNAs from synthetic oligoribonucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dönmez G, Hartmuth K, Lührmann R (2004) Modified nucleotides at the 5′ end of human U2 snRNA are required for spliceosomal E-complex formation. RNA 10:1925–1933

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Crawford DJ, Hoskins AA, Friedman LJ, Gelles J, Moore MJ (2008) Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA 14:170–179

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Kim I, Lukavsky PJ, Puglisi JD (2002) NMR study of 100 kDa HCV IRES RNA using segmental isotope labeling. J Am Chem Soc 124:9338–9339

    Article  PubMed  CAS  Google Scholar 

  4. Moore MJ, Sharp PA (1992) Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256:992–997

    Article  PubMed  CAS  Google Scholar 

  5. Kurschat WC, Müller J, Wombacher R, Helm M (2005) Optimizing splinted ligation of highly structured small RNAs. RNA 11: 1909–1914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Amitsur M, Levitz R, Kaufmann G (1987) Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J 6:2499–2503

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Bain JD, Switzer C (1992) Regioselective ligation of oligoribonucleotides using DNA splints. Nucleic Acids Res 20:4372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Stark MR, Pleiss JA, Deras M, Scaringe SA, Rader SD (2006) An RNA ligase-mediated method for the efficient creation of large, synthetic RNAs. RNA 12:2014–2019

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Höbartner C, Micura R (2004) Chemical synthesis of selenium-modified oligoribonucleotides and their enzymatic ligation leading to an U6 SnRNA stem-loop segment. J Am Chem Soc 126:1141–1149

    Article  PubMed  CAS  Google Scholar 

  10. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Wittenberg WL, Uhlenbeck OC (1985) Specific replacement of functional groups of uridine-33 in yeast phenylalanine transfer ribonucleic acid. Biochemistry 24:2705–2712

    Article  PubMed  CAS  Google Scholar 

  12. Arn EA, Abelson JN (1996) The 2″-5″ RNA ligase of Escherichia coli. Purification, cloning, and genomic disruption. J Biol Chem 271: 31145–31153

    Article  PubMed  CAS  Google Scholar 

  13. Scaringe SA (2001) RNA oligonucleotide synthesis via 5″-silyl-2-″orthoester chemistry. Methods 23:206–217

    Article  PubMed  CAS  Google Scholar 

  14. Sambrook J, Russell DW (2001) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC Discovery Grant 298521 and UNBC Office of Research awards to SDR.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stark, M.R., Rader, S.D. (2014). Efficient Splinted Ligation of Synthetic RNA Using RNA Ligase. In: Hertel, K. (eds) Spliceosomal Pre-mRNA Splicing. Methods in Molecular Biology, vol 1126. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-980-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-980-2_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-979-6

  • Online ISBN: 978-1-62703-980-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics