Skip to main content

3′ End Formation and Regulation of Eukaryotic mRNAs

Part of the Methods in Molecular Biology book series (MIMB,volume 1125)

Abstract

The polyadenosine (polyA) “tail” is an essential feature at the 3′ end of nearly all eukaryotic mRNAs. This appendage has roles in many steps in the gene expression pathway and is subject to extensive regulation. Selection of alternative sites for polyA tail addition is a widely used mechanism to generate alternative mRNAs with distinct 3′UTRs that can be subject to distinct forms of posttranscriptional control. One such type of regulation includes cytoplasmic lengthening and shortening of the polyA tail, which is coupled to changes in mRNA translation and decay. Here we present a general overview of 3′ end formation in the nucleus and regulation of the polyA tail in the cytoplasm, with an emphasis on the diverse roles of 3′ end regulation in the control of gene expression in different biological systems.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shi Y (2012) Alternative polyadenylation: new insights from global analyses. RNA 18:2105–2117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Perales R, Bentley D (2009) “Cotran-scriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 36:178–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Weill L, Belloc E, Bava FA et al (2012) Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol 19:577–585

    Article  CAS  PubMed  Google Scholar 

  4. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Villalba A, Coll O, Gebauer F (2011) Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev 21:452–457

    Article  CAS  PubMed  Google Scholar 

  6. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tian B, Manley JL (2013) Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci 38:312–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Tian B, Graber JH (2012) Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip Rev RNA 3:385–396

    Article  CAS  PubMed  Google Scholar 

  9. Mandel CR, Bai Y, Tong L (2008) Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 65:1099–1122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Kuhn U, Gundel M, Knoth A et al (2009) Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J Biol Chem 284:22803–22814

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hsin JP, Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26:2119–2137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dantonel JC, Murthy KG, Manley JL et al (1997) Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 389:399–402

    Article  CAS  PubMed  Google Scholar 

  14. McCracken S, Fong N, Yankulov K et al (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–361

    Article  CAS  PubMed  Google Scholar 

  15. Hirose Y, Manley JL (1998) RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93–96

    Article  CAS  PubMed  Google Scholar 

  16. Logan J, Falck-Pedersen E, Darnell JEJ et al (1987) A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse beta maj-globin gene. Proc Natl Acad Sci U S A 84: 8306–8310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kaida D, Berg MG, Younis I et al (2010) U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468: 664–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Berg MG, Singh LN, Younis I et al (2012) U1 snRNP determines mRNA length and regulates isoform expression. Cell 150:53–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schmid M, Jensen TH (2010) Nuclear quality control of RNA polymerase II transcripts. Wiley Interdiscip Rev RNA 1:474–485

    Article  CAS  PubMed  Google Scholar 

  20. Shi Y, Di Giammartino DC, Taylor D et al (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33:365–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Eckmann CR, Rammelt C, Wahle E (2011) Control of poly(A) tail length. Wiley Interdiscip Rev RNA 2:348–361

    Article  CAS  PubMed  Google Scholar 

  22. Derry MC, Yanagiya A, Martineau Y et al (2006) Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol 71:537–543

    Article  CAS  PubMed  Google Scholar 

  23. Miller MA, Olivas WM (2011) Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA 2:471–492

    Article  CAS  PubMed  Google Scholar 

  24. Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kim JH, Richter JD (2006) Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 24:173–183

    Article  CAS  PubMed  Google Scholar 

  26. Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lau AG, Irier HA, Gu J et al (2010) Distinct 3′UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc Natl Acad Sci U S A 107:15945–15950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Takagaki Y, Seipelt RL, Peterson ML et al (1996) The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87:941–952

    Article  CAS  PubMed  Google Scholar 

  29. Foulkes NS, Mellstrom B, Benusiglio E et al (1992) Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature 355:80–84

    Article  CAS  PubMed  Google Scholar 

  30. Foulkes NS, Schlotter F, Pevet P et al (1993) Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature 362:264–267

    Article  CAS  PubMed  Google Scholar 

  31. Wang QT, Piotrowska K, Ciemerych MA et al (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6:133–144

    Article  CAS  PubMed  Google Scholar 

  32. Belloc E, Pique M, Mendez R (2008) Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression. Biochem Soc Trans 36:665–670

    Article  CAS  PubMed  Google Scholar 

  33. Pique M, Lopez JM, Foissac S et al (2008) A combinatorial code for CPE-mediated translational control. Cell 132:434–448

    Article  CAS  PubMed  Google Scholar 

  34. Sandberg R, Neilson JR, Sarma A et al (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Smibert P, Miura P, Westholm JO et al (2012) Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep 1:277–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Miura P, Shenker S, Andreu-Agullo C et al (2013) Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res 23:812–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Macdonald CC, McMahon KW (2010) Tissue-specific mechanisms of alternative polyadenylation: testis, brain, and beyond. Wiley Interdiscip Rev RNA 1:494–501

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Lee JY, Tian B (2005) Biased alternative polyadenylation in human tissues. Genome Biol 6:R100

    Article  PubMed Central  PubMed  Google Scholar 

  39. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Peterson ML (2011) Immunoglobulin heavy chain gene regulation through polyadenylation and splicing competition. Wiley Interdiscip Rev RNA 2:92–105

    Article  CAS  PubMed  Google Scholar 

  41. Jenal M, Elkon R, Loayza-Puch F et al (2012) The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149:538–553

    Article  CAS  PubMed  Google Scholar 

  42. Bava FA, Eliscovich C, Ferreira PG et al (2013) CPEB1 coordinates alternative 3′-UTR formation with translational regulation. Nature 495:121–125

    Article  CAS  PubMed  Google Scholar 

  43. Licatalosi DD, Darnell RB (2010) RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 11:75–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donny D. Licatalosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sweet, T.J., Licatalosi, D.D. (2014). 3′ End Formation and Regulation of Eukaryotic mRNAs. In: Rorbach, J., Bobrowicz, A. (eds) Polyadenylation. Methods in Molecular Biology, vol 1125. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-971-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-971-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-970-3

  • Online ISBN: 978-1-62703-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics