Advertisement

Diagnostic Assays for Chronic Granulomatous Disease and Other Neutrophil Disorders

  • Houda Zghal Elloumi
  • Steven M. Holland
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1124)

Abstract

Inasmuch as neutrophils are the primary cellular defense against bacterial and fungal infections, disorders that affect these white cells typically predispose individuals to severe and recurrent infections. Therefore, diagnosis of such disorders is an important first step in directing long-term treatment/care for the patient. Herein, we describe methods to identify chronic granulomatous disease, leukocyte adhesion deficiency, and neutropenia. The assays are relatively simple to perform and cost effective and can be performed with equipment available in most laboratories.

Keywords

Chronic granulomatous disease (CGD) Chemiluminescence Leukocyte adhesion deficiency (LAD) Neutropenia Nitroblue tetrazolium Reactive oxygen species Superoxide 

References

  1. 1.
    Witko-Sarsat P, Rieu B, Descamps-Latscha PL, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653PubMedCrossRefGoogle Scholar
  2. 2.
    Rigby KM, DeLeo FR (2012) Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 34: 237–259PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Cederlund A, Gudmundsson GH, Agerberth B (2011) Antimicrobial peptides important in innate immunity. FEBS J 278:3942–3951PubMedCrossRefGoogle Scholar
  4. 4.
    Rosenzweig SD, Holland SM (2011) Recent insights into the pathobiology of innate immune deficiencies. Curr Allergy Asthma Rep 11:369–377PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Berendes H, Bridges RA, Good RA (1957) A fatal granulomatous disease of childhood: the clinical study of a new syndrome. Minn Med 40:309–312PubMedGoogle Scholar
  6. 6.
    Levy R, Rotrosen D, Nagauker O, Leto T, Malech H (1990) Induction of the respiratory burst in HL-60 cells, correlation of function and protein expression. J Immunol 145: 2595–2601PubMedGoogle Scholar
  7. 7.
    Hanna S, Etzioni A (2012) Leukocyte adhesion deficiencies. Ann N Y Acad Sci 1250: 50–55PubMedCrossRefGoogle Scholar
  8. 8.
    Boztug K, Klein C (2011) Genetic etiologies of severe congenital neutropenia. Curr Opin Pediatr 23:21–26PubMedCrossRefGoogle Scholar
  9. 9.
    Kostman R (1975) Infantile genetic agranulocytosis. A review with presentation of ten new cases. Acta Paediatr Scand 64:362–368PubMedCrossRefGoogle Scholar
  10. 10.
    Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC (1999) Mutations in ELA2 encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 23:433–436PubMedCrossRefGoogle Scholar
  11. 11.
    Zuelzer WW (1964) “Myelokathexis”: a new form of chronic granulocytopenia. N Engl J Med 270:699–704PubMedCrossRefGoogle Scholar
  12. 12.
    Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, Klotman ME, Diaz GA (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34:70–74PubMedCrossRefGoogle Scholar
  13. 13.
    Stroncek DF, Skubitz KM, McCullough J (1990) Biochemical nature of the neutrophil-specific antigen NB1. Blood 75:744–755PubMedGoogle Scholar
  14. 14.
    Baehner RL, Boxer LA, Davis J (1976) The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood 48:309–313PubMedGoogle Scholar
  15. 15.
    Choi HS, Kim JW, Cha YN, Kim C (2006) A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoass Immunochem 27:31–44CrossRefGoogle Scholar
  16. 16.
    Tan AS, Berridge MV (2000) Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. J Immunol Methods 238:59–68PubMedCrossRefGoogle Scholar
  17. 17.
    Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444PubMedCrossRefGoogle Scholar
  18. 18.
    Peskin AV, Winterbourn CC (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293:157–166PubMedCrossRefGoogle Scholar
  19. 19.
    Björquist P, Palmer M, Ek B (1994) Measurement of superoxide anion production using maximal rate of cytochrome (III) C reduction in phorbol ester stimulated neutrophils, immobilised to microtiter plates. Biochem Pharmacol 48: 1967–1972PubMedCrossRefGoogle Scholar
  20. 20.
    Liu L, Dahlgren C, Elwing H, Lundqvist H (1996) A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils. J Immunol Methods 192:173–178PubMedCrossRefGoogle Scholar
  21. 21.
    Hasegawa H, Suzuki K, Nakaji S, Sugawara K (1997) Analysis and assessment of the capacity of neutrophils to produce reactive oxygen species in a 96-well microplate format using lucigenin- and luminol-dependent chemiluminescence. J Immunol Methods 210:1–10PubMedCrossRefGoogle Scholar
  22. 22.
    Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H (2009) In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med 47:760–766PubMedCrossRefGoogle Scholar
  23. 23.
    Skatchkov MP, Sperling D, Hink U, Mülsch A, Harrison DG, Sindermann I, Meinertz T, Münzel T (1999) Validation of lucigenin as a chemiluminescent probe to monitor vascular superoxide as well as basal vascular nitric oxide production. Biochem Biophys Res Commun 254:319–324PubMedCrossRefGoogle Scholar
  24. 24.
    Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HH, Morawietz H (2006) Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun 344:200–205PubMedCrossRefGoogle Scholar
  25. 25.
    Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA (1995) Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods 178:89–97PubMedCrossRefGoogle Scholar
  26. 26.
    Bass DA, Parce W, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometry studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917PubMedGoogle Scholar
  27. 27.
    Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11:1–5PubMedCrossRefGoogle Scholar
  28. 28.
    Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′, 7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27:146–159Google Scholar
  29. 29.
    Emmendörffer A, Nakamura M, Rothe G, Spiekermann K, Lohmann Matthes ML, Roesler J (1994) Evaluation of flow cytometric methods for the diagnosis of chronic granulomatous disease variants under routine laboratory conditions. Cytometry 18:147–155PubMedCrossRefGoogle Scholar
  30. 30.
    Alvarez-Larran A, Toll T, Rives S, Estella J (2005) Assessment of neutrophil activation in whole blood by flow cytometry. Clin Lab Haematol 27:41–46PubMedCrossRefGoogle Scholar
  31. 31.
    Pou S, Rosen GM, Bntigan BE, Cohen MS (1989) Intracellular spintrapping of oxygen centered radicals generated by human neutrophils. Biochim Biophys Acta 991:459–464PubMedCrossRefGoogle Scholar
  32. 32.
    Roubaud V, Sankarapandi S, Kuppusamy P, Tordo P, Zweier JL (1997) Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide. Anal Biochem 247: 404–411PubMedCrossRefGoogle Scholar
  33. 33.
    Leiding JW, Holland SM (2012) Chronic granulomatous disease. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP (eds) GeneReviews™ [internet]. University of Washington, Seattle, Seattle, WA, 1993–2013Google Scholar
  34. 34.
    Newburger PE, Cohen HJ, Rothchild SB, Hobbins JC, Malawista SE, Mahoney MJ (1979) Prenatal diagnosis of chronic granulomatous disease. N Engl J Med 300:178–181PubMedCrossRefGoogle Scholar
  35. 35.
    Matthay KK, Golbus MS, Wara DW, Mentzer WC (1984) Prenatal diagnosis of chronic granulomatous disease. Am J Med Genet 17: 731–739PubMedCrossRefGoogle Scholar
  36. 36.
    Anderson DC, Schmalsteig FC, Finegold MJ, Hughes BJ, Rothlein R, Miller LJ et al (1985) The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis 152:669–689Google Scholar
  37. 37.
    Tan SM, Hyland RH, Al-shamkhani A, Douglass WA, Shaw JM, Law SK (2000) Effect of integrin beta 2 subunit truncations on LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) assembly, surface expression, and function. J Immunol 165:2574–2581PubMedGoogle Scholar
  38. 38.
    Verheugt FW, Von dem Borne AE, Decary F, Engelfriet CP (1977) The detection of granulocyte alloantibodies with an indirect immunofluorescence test. Br J Haematol 36: 533–544PubMedCrossRefGoogle Scholar
  39. 39.
    Curtis BR, Reno C, Aster RH (2005) Neonatal alloimmune neutropenia attributed to maternal immunoglobulin G antibodies against the neutrophil alloantigen HNA-1c (SH): a report of five cases. Transfusion 45:1308–1313PubMedCrossRefGoogle Scholar
  40. 40.
    Wikman A, Olsson I, Shanwellt A, Lundahl J (2001) Detection by flow cytometry of antibodies against surface and intracellular granulocyte antigens. Scand J Clin Lab Invest 61: 307–316PubMedCrossRefGoogle Scholar
  41. 41.
    Vowells SJ, Fleisher TA, Sekhsaria S, Alling DW, Maguire TE, Malech HL (1996) Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. J Pediatr 128:104–107PubMedCrossRefGoogle Scholar
  42. 42.
    Lindlöf M, Kere J, Ristola M, Repo H, Leirisalo-Repo M, van Koskull H, Ammala P, De la Chapelle A (1987) Prenatal diagnosis of X-linked granulomatous disease using restriction fragment length polymorphism analysis. Genomics 1:87–92PubMedCrossRefGoogle Scholar
  43. 43.
    Heyworth PG, Curnutte JT (2006) Molecular diagnosis of chronic granulomatous disease. In: Detrick B, Hamilton RG, Folds JD (eds) Manual of molecular and clinical laboratory immunology, 7th edn. ASM press, Washington, DC, pp 262–271Google Scholar
  44. 44.
    Chien SC, Lee CN, Hung CC, Tsao PN, Su YN, Hsieh FJ (2003) Rapid prenatal diagnosis of X-linked chronic granulomatous disease using a denaturing high performance liquid chromatography (DHPLC) system. Prenat Diagn 23:1092–1096PubMedCrossRefGoogle Scholar
  45. 45.
    Kaplan J, De Domenico I, Ward DM (2008) Chediak-Higashi syndrome. Curr Opin Hematol 15:22–29PubMedCrossRefGoogle Scholar
  46. 46.
    Tamura A, Agematsu K, Mori T, Kawai H, Kuratsuji T, Shimane M, Tani K, Asano S, Komiyama A (1994) A marked decrease in defensin mRNA in the only case of congenital neutrophil-specific granule deficiency reported in Japan. Int J Hematol 59:137–142PubMedGoogle Scholar
  47. 47.
    Zen K, Reaves TA, Soto I, Liu Y (2006) Response to genistein: assaying the activation status and chemotaxis efficacy of isolated neutrophils. J Immunol Methods 309:86–98PubMedCrossRefGoogle Scholar
  48. 48.
    Hanson AJ, Quinn MT (2002) Effect of fibrin sealant composition on human neutrophil chemotaxis. J Biomed Mater Res 61:474–481PubMedCrossRefGoogle Scholar
  49. 49.
    Mauch L, Lun A, O’Gorman MRG, Harris JS, Schulze I, Zychlinsky A, Fuchs T, Oelschlagel U, Brenner S, Kutter D, Rosen-Wolff A, Roesler J (2007) Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but Can Be easily discerned in routine testing for CGD. Clinical Chem 53(5):890–896CrossRefGoogle Scholar
  50. 50.
    Elloumi HZ, Holland SM (2007) Diagnostic assays for chronic granulomatous disease and other neutrophil disorders. Methods Mol Biol 412:505–523PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Houda Zghal Elloumi
    • 1
  • Steven M. Holland
    • 1
  1. 1.Laboratory of Clinical Infectious DiseasesNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations