Advertisement

Spinning Disk Confocal Imaging of Neutrophil Migration in Zebrafish

  • Pui-ying Lam
  • Robert S. Fischer
  • William D. Shin
  • Clare M. Waterman
  • Anna Huttenlocher
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1124)

Abstract

Live-cell imaging techniques have been substantially improved due to advances in confocal microscopy instrumentation coupled with ultrasensitive detectors. The spinning disk confocal system is capable of generating images of fluorescent live samples with broad dynamic range and high temporal and spatial resolution. The ability to acquire fluorescent images of living cells in vivo on a millisecond timescale allows the dissection of biological processes that have not previously been visualized in a physiologically relevant context. In vivo imaging of rapidly moving cells such as neutrophils can be technically challenging. In this chapter, we describe the practical aspects of imaging neutrophils in zebrafish embryos using spinning disk confocal microscopy. Similar setups can also be applied to image other motile cell types and signaling processes in translucent animals or tissues.

Keywords

Spinning disk Confocal microscopy Neutrophils Migration In vivo imaging Zebrafish 

Notes

Acknowledgements

Dr. Benjamin Ng (Carl Zeiss) has provided valuable advice on the SDCM setup. This work was supported by the National Institutes of Health (grant number GM074827) to A. H. and the Hong Kong Croucher Foundation, Joint Universities Summer Teaching Laboratory (JUSTL) program to P-Y.L.

References

  1. 1.
    Meeker ND, Trede NS (2008) Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 32:745–757PubMedCrossRefGoogle Scholar
  2. 2.
    Deng Q, Huttenlocher A (2012) Leukocyte migration from a fish eye’s view. J Cell Sci 125:3949–3956PubMedCrossRefGoogle Scholar
  3. 3.
    Graf R, Rietdorf J, Zimmermann T (2005) Live cell spinning disk microscopy. Adv Biochem Eng Biotechnol 95:57–75PubMedGoogle Scholar
  4. 4.
    Wang E, Babbey CM, Dunn KW (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218:148–159PubMedCrossRefGoogle Scholar
  5. 5.
    Fischer RS, Wu Y, Kanchanawong P, Shroff H, Waterman CM (2011) Microscopy in 3D: a biologist’s toolbox. Trends Cell Biol 21: 682–691PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Salmon WC, Waters JC (2011) CCD cameras for fluorescence imaging of living cells. Cold Spring Harb Protoc 2011:790–802PubMedCrossRefGoogle Scholar
  7. 7.
    Murray JM, Appleton PL, Swedlow JR, Waters JC (2007) Evaluating performance in three-dimensional fluorescence microscopy. J Microsc 228:390–405PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, EugeneGoogle Scholar
  9. 9.
    Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A (2006) Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol 80:1281–1288PubMedCrossRefGoogle Scholar
  10. 10.
    Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108: 3976–3978PubMedCrossRefGoogle Scholar
  11. 11.
    Hall C, Flores MV, Storm T, Crosier K, Crosier P (2007) The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 7:42PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Lam PY, Yoo SK, Green JM, Huttenlocher A (2012) The SH2-domain-containing inositol 5-phosphatase (SHIP) limits the motility of neutrophils and their recruitment to wounds in zebrafish. J Cell Sci 125:4973–4978PubMedCrossRefGoogle Scholar
  13. 13.
    Urasaki A, Morvan G, Kawakami K (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174: 639–649PubMedCrossRefGoogle Scholar
  14. 14.
    Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp 25:1115PubMedGoogle Scholar
  15. 15.
    Yoo SK, Huttenlocher A (2011) Spatiotemporal photolabeling of neutrophil trafficking during inflammation in live zebrafish. J Leukoc Biol 89:661–667PubMedCrossRefGoogle Scholar
  16. 16.
    d’Alencon CA, Pena OA, Wittmann C, Gallardo VE, Jones RA, Loosli F, Liebel U, Grabher C, Allende ML (2010) A high-throughput chemically induced inflammation assay in zebrafish. BMC Biol 8:151PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tobin DM, Vary JC Jr, Ray JP, Walsh GS, Dunstan SJ, Bang ND, Hagge DA, Khadge S, King MC, Hawn TR, Moens CB, Ramakrishnan L (2010) The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140:717–730PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480: 109–112PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Groom D (2002) Cosmic rays and other nonsense in astronomical CCD imagers. Exp Astron 14:45–55CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Bai XT, Zhu KY, Jin Y, Deng M, Le HY, Fu YF, Chen Y, Zhu J, Look AT, Kanki J, Chen Z, Chen SJ, Liu TX (2008) In vivo interstitial migration of primitive macrophages mediated by JNK-matrix metalloproteinase 13 signaling in response to acute injury. J Immunol 181:2155–2164PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Pui-ying Lam
    • 1
  • Robert S. Fischer
    • 2
  • William D. Shin
    • 2
  • Clare M. Waterman
    • 2
  • Anna Huttenlocher
    • 3
  1. 1.Program in Cellular and Molecular BiologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Cell Biology and Physiology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUSA
  3. 3.Departments of Pediatrics and PharmacologyUniversity of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations