Skip to main content

In Vivo Population Imaging of Dendritic Integration in Neocortex

  • Protocol
  • First Online:
Optical Imaging of Neocortical Dynamics

Part of the book series: Neuromethods ((NM,volume 85))

  • 1748 Accesses

Abstract

Translating the advances seen recently in recording from neurons in vivo to dendritic recordings presents special difficulties. In vivo two-photon imaging of dendrites was achieved over a decade ago and is still the method of choice for recording from small dendritic compartments in single neurons but has proven more difficult to apply to many dendrites simultaneously or to awake, freely moving preparations. An alternative that can be applied to layer 5 neocortical pyramidal neurons is the use of a fiber-optic method combined with bolus loading of fluorescent calcium indicator. This method takes advantage of the fact that the apical dendrites of these neurons are long (~1 mm) and always project in the same manner towards the cortical surface, thus allowing the fluorescence in these dendrites to be isolated from all other filled structures. Here we describe the details of this approach (also called the “periscope” method) and give examples of the kinds of recordings that can be made with this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165

    Article  CAS  PubMed  Google Scholar 

  2. Svoboda K, Helmchen F, Denk W, Tank DW (1999) Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat Neurosci 2:65–73

    Article  CAS  PubMed  Google Scholar 

  3. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  CAS  PubMed  Google Scholar 

  4. Kerr JN, Greenberg D, Helmchen F (2005) Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci USA 102:14063–14068

    Article  CAS  PubMed  Google Scholar 

  5. Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603

    Article  CAS  PubMed  Google Scholar 

  6. Oka Y, Katada S, Omura M, Suwa M, Yoshihara Y, Touhara K (2006) Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron 52:857–869

    Article  CAS  PubMed  Google Scholar 

  7. Kerr JN, de Kock CP, Greenberg DS, Bruno RM, Sakmann B, Helmchen F (2007) Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J Neurosci 27:13316–13328

    Article  CAS  PubMed  Google Scholar 

  8. Rochefort NL, Grienberger CM, Konnerth A (2011) In vivo two-photon calcium imaging using multicell bolus loading of fluorescent indicators. In: Helmchen F, Konnerth A (eds) Imaging in neuroscience: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 491–500

    Google Scholar 

  9. Waters J, Schaefer A, Sakmann B (2005) Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog Biophys Mol Biol 87:145–170

    Article  PubMed  Google Scholar 

  10. Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464:1307–1312

    Article  CAS  PubMed  Google Scholar 

  11. Varga Z, Jia H, Sakmann B, Konnerth A (2011) Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proc Natl Acad Sci USA 108:15420–15425

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Leischner U, Rochefort NL, Nelken I, Konnerth A (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475:501–505

    Article  CAS  PubMed  Google Scholar 

  13. Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME (2012) The cellular basis of GABAB-mediated interhemispheric inhibition. Science 335:989–993

    Article  CAS  PubMed  Google Scholar 

  14. Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490(7420):397–401

    Article  CAS  PubMed  Google Scholar 

  15. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dombeck D, Tank DW (2011) Two-photon imaging of neural activity in awake mobile mice. In: Helmchen F, Konnerth A (eds) Imaging in neuroscience: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 827–838

    Google Scholar 

  17. Helmchen F, Fee MS, Tank DW, Denk W (2001) A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31:903–912

    Article  CAS  PubMed  Google Scholar 

  18. Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RP, Ko TH, Burns LD, Jung JC, Schnitzer MJ (2008) High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat Methods 5:935–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sawinski J, Wallace DJ, Greenberg DS, Grossmann S, Denk W, Kerr JN (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci USA 106:19557–19562

    Article  CAS  PubMed  Google Scholar 

  20. London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532

    Article  CAS  PubMed  Google Scholar 

  21. Magee JC, Johnston D (2005) Plasticity of dendritic function. Curr Opin Neurobiol 15:334–342

    Article  CAS  PubMed  Google Scholar 

  22. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    Article  CAS  PubMed  Google Scholar 

  23. Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–441

    Article  CAS  PubMed  Google Scholar 

  24. Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756–760

    Article  CAS  PubMed  Google Scholar 

  25. Archie KA, Mel BW (2000) A model for intradendritic computation of binocular disparity. Nat Neurosci 3:54–63

    Article  CAS  PubMed  Google Scholar 

  26. Spratling MW (2002) Cortical region interactions and the functional role of apical dendrites. Behav Cogn Neurosci Rev 1:219–228

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Chen S, Nolan MF, Siegelbaum SA (2002) Activity-dependent regulation of HCN pacemaker channels by cyclic AMP: signaling through dynamic allosteric coupling. Neuron 36:451–461

    Article  CAS  PubMed  Google Scholar 

  28. Larkum ME, Nevian T (2008) Synaptic clustering by dendritic signalling mechanisms. Curr Opin Neurobiol 18:321–331

    Article  CAS  PubMed  Google Scholar 

  29. Larkum ME, Senn W, Lüscher HR (2004) Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb Cortex 14:1059–1070

    Article  PubMed  Google Scholar 

  30. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  31. Boly M, Garrido MI, Gosseries O, Bruno MA, Boveroux P, Schnakers C, Massimini M, Litvak V, Laureys S, Friston K (2011) Preserved feedforward but impaired top-down processes in the vegetative state. Science 332:858–862

    Article  CAS  PubMed  Google Scholar 

  32. Murayama M, Perez-Garci E, Lüscher HR, Larkum ME (2007) Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. J Neurophysiol 98:1791–1805

    Google Scholar 

  33. Nagayama S, Zeng S, Xiong W, Fletcher ML, Masurkar AV, Davis DJ, Pieribone VA, Chen WR (2007) In vivo simultaneous tracing and Ca2+ imaging of local neuronal circuits. Neuron 53:789–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Göbel W, Helmchen F (2007) New angles on neuronal dendrites in vivo. J Neurophysiol 98:3770–3779

    Article  PubMed  Google Scholar 

  35. Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108:1550–1564

    Article  CAS  PubMed  Google Scholar 

  36. Mittmann W, Wallace DJ, Czubayko U, Herb JT, Schaefer AT, Looger LL, Denk W, Kerr JN (2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat Neurosci 14:1089–1093

    Article  CAS  PubMed  Google Scholar 

  37. Murayama M, Larkum ME (2009) In vivo dendritic calcium imaging with a fiberoptic periscope system. Nat Protoc 4:1551–1559

    Article  CAS  PubMed  Google Scholar 

  38. Lütcke H, Murayama M, Hahn T, Margolis DJ, Astori S, Zum Alten Borgloh SM, Göbel W, Yang Y, Tang W, Kügler S, Sprengel R, Nagai T, Miyawaki A, Larkum ME, Helmchen F, Hasan MT (2010) Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front Neural Circ 4:9

    Google Scholar 

  39. Murayama M, Pérez-Garci E, Nevian T, Bock T, Senn W, Larkum ME (2009) Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457:1137–1141

    Article  CAS  PubMed  Google Scholar 

  40. Murayama M, Larkum ME (2009) Enhanced dendritic activity in awake rats. Proc Natl Acad Sci USA 106:20482–20486

    Article  CAS  PubMed  Google Scholar 

  41. Pérez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616

    Article  PubMed  Google Scholar 

  42. Greenberg DS, Houweling AR, Kerr JN (2008) Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat Neurosci 11:749–751

    Article  CAS  PubMed  Google Scholar 

  43. de Kock CP, Sakmann B (2008) High frequency action potential bursts (>or = 100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex. J Physiol 586:3353–3364

    Article  PubMed  Google Scholar 

  44. Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in freely moving rats. Neuron 51:399–407

    Article  CAS  PubMed  Google Scholar 

  45. Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505:617–632

    Article  CAS  PubMed  Google Scholar 

  46. Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996

    Article  CAS  PubMed  Google Scholar 

  47. Larkum ME, Kaiser KM, Sakmann B (1999) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci USA 96:14600–14604

    Article  CAS  PubMed  Google Scholar 

  48. Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505:605–616

    Article  CAS  PubMed  Google Scholar 

  49. Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289

    Article  CAS  PubMed  Google Scholar 

  50. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  51. Chia TH, Levene MJ (2009) Microprisms for in vivo multilayer cortical imaging. J Neurophysiol 102:1310–1314

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Murayama, M., Larkum, M.E. (2014). In Vivo Population Imaging of Dendritic Integration in Neocortex. In: Weber, B., Helmchen, F. (eds) Optical Imaging of Neocortical Dynamics. Neuromethods, vol 85. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-785-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-785-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-784-6

  • Online ISBN: 978-1-62703-785-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics