Skip to main content

Imaging Morphology and Function of Cortical Microglia

  • Protocol
  • First Online:
Optical Imaging of Neocortical Dynamics

Part of the book series: Neuromethods ((NM,volume 85))

Abstract

Microglial cells are the innate immune cells of the central nervous system. In the healthy adult brain “resting” ramified microglia continuously palpate their environment to monitor the integrity of and to react to any disturbance of brain homeostasis. During injury, inflammation, and in the course of neurodegenerative diseases microglia become activated, proliferate, and release a plethora of cytokines as well as reactive oxygen species. In addition to their well known role in disease, it has become increasingly clear that “resting” microglia also contribute to normal brain physiology, both during postnatal development and in the mature adult brain.

Functional in vivo imaging of microglia first of all captures the morphological changes accompanying microglial transition between “resting” and activated states. In addition, intracellular Ca2+ homeostasis of microglia is believed to be altered between the two states [1–3]. So far, however, microglial Ca2+ signaling was predominantly studied in reduced preparations like brain slices or cell cultures, in which microglia are found in a rather activated state. In this chapter we describe a technique for studying microglial Ca2+ signaling in vivo. Furthermore, we discuss a new approach for visualization of morphological dynamics of microglial cells in vivo at high resolution. This approach utilizes a lectin-based staining technique and is applicable to any deliberate mouse strain at any developmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Färber K, Kettenmann H (2006) Functional role of calcium signals for microglial function. Glia 54:656–665

    Article  PubMed  Google Scholar 

  2. Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23:4410–4419

    CAS  PubMed  Google Scholar 

  3. Light AR, Wu Y, Hughen RW, Guthrie PB (2006) Purinergic receptors activating rapid intracellular Ca increases in microglia. Neuron Glia Biol 2:125–138

    Article  PubMed Central  PubMed  Google Scholar 

  4. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227–1235

    Article  CAS  PubMed  Google Scholar 

  5. Soulet D, Rivest S (2008) Microglia. Curr Biol 18:R506–R508

    Article  CAS  PubMed  Google Scholar 

  6. Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31

    Article  PubMed Central  PubMed  Google Scholar 

  7. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  8. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  9. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  10. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  11. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  12. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  CAS  PubMed  Google Scholar 

  13. Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    Article  PubMed Central  PubMed  Google Scholar 

  14. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  CAS  PubMed  Google Scholar 

  15. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069

    Article  CAS  PubMed  Google Scholar 

  16. McLarnon JG (2005) Purinergic mediated changes in Ca2+ mobilization and functional responses in microglia: effects of low levels of ATP. J Neurosci Res 81:349–356

    Article  CAS  PubMed  Google Scholar 

  17. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  CAS  PubMed  Google Scholar 

  18. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  20. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295

    Article  CAS  PubMed  Google Scholar 

  21. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S, Kohsaka S (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81:357–362

    Article  CAS  PubMed  Google Scholar 

  23. Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163

    Article  CAS  PubMed  Google Scholar 

  24. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 95:10896–10901

    Article  CAS  PubMed  Google Scholar 

  25. Eichhoff G, Brawek B, Garaschuk O (2011) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta 1813:1014–1024

    Article  CAS  PubMed  Google Scholar 

  26. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31:16241–16250

    Article  CAS  PubMed  Google Scholar 

  27. Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177:2549–2562

    Article  CAS  PubMed  Google Scholar 

  28. Möller T (2002) Calcium signaling in microglial cells. Glia 40:184–194

    Article  PubMed  Google Scholar 

  29. Pocock JM, Kettenmann H (2007) Neurotrans-mitter receptors on microglia. Trends Neurosci 30:527–535

    Article  CAS  PubMed  Google Scholar 

  30. Inoue K (2002) Microglial activation by purines and pyrimidines. Glia 40:156–163

    Article  PubMed  Google Scholar 

  31. Re DB, Przedborski S (2006) Fractalkine: moving from chemotaxis to neuroprotection. Nat Neurosci 9:859–861

    Article  PubMed  Google Scholar 

  32. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  CAS  PubMed  Google Scholar 

  33. Seifert S, Pannell M, Uckert W, Farber K, Kettenmann H (2011) Transmitter- and hormone-activated Ca2+ responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca2+ sensor. Cell Calcium 49:365–375

    Article  CAS  PubMed  Google Scholar 

  34. Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat Methods 7:729–732

    Article  CAS  PubMed  Google Scholar 

  35. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hubener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  CAS  PubMed  Google Scholar 

  36. Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci USA 103:4753–4758

    Article  CAS  PubMed  Google Scholar 

  37. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101:10554–10559

    Article  CAS  PubMed  Google Scholar 

  38. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–1891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Atkin SD, Patel S, Kocharyan A, Holtzclaw LA, Weerth SH, Schram V, Pickel J, Russell JT (2009) Transgenic mice expressing a cameleon fluorescent Ca2+ indicator in astrocytes and Schwann cells allow study of glial cell Ca2+ signals in situ and in vivo. J Neurosci Methods 181:212–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    Article  CAS  PubMed  Google Scholar 

  42. Murphy LA, Goldstein IJ (1977) Five alpha-D-galactopyranosyl-binding isolectins from Bandeiraea simplicifolia seeds. J Biol Chem 252:4739–4742

    CAS  PubMed  Google Scholar 

  43. Streit WJ, Schulte BA, Balentine DJ, Spicer SS (1985) Histochemical localization of galactose-containing glycoconjugates in sensory neurons and their processes in the central and peripheral nervous system of the rat. J Histochem Cytochem 33:1042–1052

    Article  CAS  PubMed  Google Scholar 

  44. Slifkin M, Doyle RJ (1990) Lectins and their application to clinical microbiology. Clin Microbiol Rev 3:197–218

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Boucsein C, Kettenmann H, Nolte C (2000) Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci 12:2049–2058

    Article  CAS  PubMed  Google Scholar 

  46. Newell EW, Stanley EF, Schlichter LC (2007) Reversed Na+/Ca2+ exchange contributes to Ca2+ influx and respiratory burst in microglia. Channels (Austin) 1:366–376

    Google Scholar 

  47. Streit WJ, Kreutzberg GW (1987) Lectin binding by resting and reactive microglia. J Neurocytol 16:249–260

    Article  CAS  PubMed  Google Scholar 

  48. Streit WJ (1990) An improved staining method for rat microglial cells using the lectin from Griffonia simplicifolia (GSA I-B4). J Histochem Cytochem 38:1683–1686

    Article  CAS  PubMed  Google Scholar 

  49. Bordey A, Spencer DD (2003) Chemokine modulation of high-conductance Ca2+-sensitive K+ currents in microglia from human hippocampi. Eur J Neurosci 18:2893–2898

    Article  CAS  PubMed  Google Scholar 

  50. Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R, Kettenmann H (2004) CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 24:8500–8509

    Article  CAS  PubMed  Google Scholar 

  51. Bankston PW, Porter GA, Milici AJ, Palade GE (1991) Differential and specific labeling of epithelial and vascular endothelial cells of the rat lung by Lycopersicon esculentum and Griffonia simplicifolia I lectins. Eur J Cell Biol 54:187–195

    CAS  PubMed  Google Scholar 

  52. Moffett JR, Els T, Espey MG, Walter SA, Streit WJ, Namboodiri MA (1997) Quinolinate immunoreactivity in experimental rat brain tumors is present in macrophages but not in astrocytes. Exp Neurol 144:287–301

    Article  CAS  PubMed  Google Scholar 

  53. Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A (2006) Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 453:385–396

    Article  CAS  PubMed  Google Scholar 

  54. Schwendele B, Brawek B, Hermes M, Garaschuk O (2012) High resolution in vivo imaging of microglia using a versatile non genetically-encoded marker. Eur J Immunol 42:2193–2196

    Article  CAS  PubMed  Google Scholar 

  55. Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1:31–37

    Article  CAS  PubMed  Google Scholar 

  56. Kang J, Kang N, Yu Y, Zhang J, Petersen N, Tian GF, Nedergaard M (2010) Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons. Neuroscience 169:1601–1609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Garaschuk O (2013) Imaging microcircuit function in healthy and diseased brain. Exp Neurol 242:41–49

    Article  PubMed  Google Scholar 

  58. Fink S, Kovalchuk Y, Homma R, Schwendele B, Direnberger S, Cohen LB, Griesbeck O, Garaschuk O (2012) In vivo functional imaging of the olfactory bulb at single cell resolution. In: Fellin T, Halassa M (eds) Neuronal network analysis. Humana Press, New York, pp 21–43

    Google Scholar 

  59. Nevian T, Helmchen F (2007) Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch 454:675–688

    Article  CAS  PubMed  Google Scholar 

  60. Whittemore ER, Korotzer AR, Etebari A, Cotman CW (1993) Carbachol increases intracellular free calcium in cultured rat microglia. Brain Res 621:59–64

    Article  CAS  PubMed  Google Scholar 

  61. Zhang L, McLarnon JG, Goghari V, Lee YB, Kim SU, Krieger C (1998) Cholinergic agonists increase intracellular Ca2+ in cultured human microglia. Neurosci Lett 255:33–36

    Article  CAS  PubMed  Google Scholar 

  62. Biber K, Laurie DJ, Berthele A, Sommer B, Tolle TR, Gebicke-Harter PJ, van Calker D, Boddeke HW (1999) Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72:1671–1680

    Article  CAS  PubMed  Google Scholar 

  63. Colton CA, Jia M, Li MX, Gilbert DL (1994) K+ modulation of microglial superoxide production: involvement of voltage-gated Ca2+ channels. Am J Physiol 266:C1650–C1655

    CAS  PubMed  Google Scholar 

  64. Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166:6383–6391

    CAS  PubMed  Google Scholar 

  65. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Hefendehl JK, Wegenast-Braun BM, Liebig C, Eicke D, Milford D, Calhoun ME, Kohsaka S, Eichner M, Jucker M (2011) Long-term in vivo imaging of beta-amyloid plaque appearance and growth in a mouse model of cerebral beta-amyloidosis. J Neurosci 31:624–629

    Article  CAS  PubMed  Google Scholar 

  67. Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85:352–370

    Article  CAS  PubMed  Google Scholar 

  68. Yong VW, Rivest S (2009) Taking advantage of the systemic immune system to cure brain diseases. Neuron 64:55–60

    Article  CAS  PubMed  Google Scholar 

  69. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brawek, B., Garaschuk, O. (2014). Imaging Morphology and Function of Cortical Microglia. In: Weber, B., Helmchen, F. (eds) Optical Imaging of Neocortical Dynamics. Neuromethods, vol 85. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-785-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-785-3_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-784-6

  • Online ISBN: 978-1-62703-785-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics