Chronic Two-Photon Imaging of Neural Activity in the Anesthetized and Awake Behaving Rodent

  • David J. Margolis
  • Henry Lütcke
  • Fritjof Helmchen
  • Bruno Weber
  • Florent Haiss
Part of the Neuromethods book series (NM, volume 85)


Chronic in vivo two-photon imaging of genetically encoded sensors has recently enabled the measurement of activity from the same individual neurons repeatedly in different imaging sessions over months, opening new possibilities to investigate the function and plasticity of neuronal activity in both anesthetized and awake animals. A successful chronic imaging experiment involves the combination of several key techniques, including expression of genetically encoded indicators, optical measurement with cellular resolution through a cranial window, and, in awake animals, behavioral paradigms adapted to the two-photon microscope. Here we cover methods and advances in chronic imaging of cortical activity in the awake, behaving rodent for the investigation of learning and performance of sensory and cognitive tasks.

Key words

Neuronal networks Action potential GECIs Cortical activity Sensory perception Behavior 


  1. 1.
    Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M (2006) Prior experience enhances plasticity in adult visual cortex. Nat Neurosci 9:127–132PubMedCrossRefGoogle Scholar
  2. 2.
    Kaneko M, Hanover JL, England PM, Stryker MP (2008) TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation. Nat Neurosci 11:497–504PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Masino SA, Frostig RD (1996) Quantitative long-term imaging of the functional representation of a whisker in rat barrel cortex. Proc Natl Acad Sci USA 93:4942–4947PubMedCrossRefGoogle Scholar
  4. 4.
    Polley DB, Chen-Bee CH, Frostig RD (1999) Two directions of plasticity in the sensory-deprived adult cortex. Neuron 24:623–637PubMedCrossRefGoogle Scholar
  5. 5.
    Polley DB, Kvasnak E, Frostig RD (2004) Naturalistic experience transforms sensory maps in the adult cortex of caged animals. Nature 429:67–71PubMedCrossRefGoogle Scholar
  6. 6.
    Slovin H, Arieli A, Hildesheim R, Grinvald A (2002) Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. J Neurophysiol 88:3421–3438PubMedCrossRefGoogle Scholar
  7. 7.
    Bozza T, McGann JP, Mombaerts P, Wachowiak M (2004) In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42:9–21PubMedCrossRefGoogle Scholar
  8. 8.
    Minderer M, Liu W, Sumanovski LT, Kügler S, Helmchen F, Margolis DJ (2012) Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator. J Physiol 590:99–107PubMedGoogle Scholar
  9. 9.
    Dickey AS, Suminski A, Amit Y, Hatsopoulos NG (2009) Single-unit stability using chronically implanted multielectrode arrays. J Neurophysiol 102:1331–1339PubMedCrossRefGoogle Scholar
  10. 10.
    Tolias AS, Ecker AS, Siapas AG, Hoenselaar A, Keliris GA, Logothetis NK (2007) Recording chronically from the same neurons in awake, behaving primates. J Neurophysiol 98:3780–3790PubMedCrossRefGoogle Scholar
  11. 11.
    Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451PubMedCrossRefGoogle Scholar
  12. 12.
    Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658PubMedCrossRefGoogle Scholar
  13. 13.
    Andermann ML, Kerlin AM, Reid RC (2010) Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front Cell Neurosci 4:3PubMedCentralPubMedGoogle Scholar
  14. 14.
    Huber D, Gutnisky DA, Peron S, O’Connor DH, Wiegert JS, Tian L, Oertner TG, Looger LL, Svoboda K (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484:473–478PubMedCrossRefGoogle Scholar
  15. 15.
    Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hübener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811PubMedCrossRefGoogle Scholar
  16. 16.
    Margolis DJ, Lütcke H, Schulz K, Haiss F, Weber B, Kügler S, Hasan MT, Helmchen F (2012) Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat Neurosci 15:1539–1546PubMedCrossRefGoogle Scholar
  17. 17.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Akemann W, Mutoh H, Perron A, Rossier J, Knopfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649PubMedCrossRefGoogle Scholar
  19. 19.
    Zhong H, Sia GM, Sato TR, Gray NW, Mao T, Khuchua Z, Huganir RL, Svoboda K (2009) Subcellular dynamics of type II PKA in neurons. Neuron 62:363–374PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A (2006) Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 453:385–396PubMedCrossRefGoogle Scholar
  21. 21.
    Göbel W, Helmchen F (2007) In vivo calcium imaging of neural network function. Physiology (Bethesda) 22:358–365CrossRefGoogle Scholar
  22. 22.
    Grewe BF, Helmchen F (2009) Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 19:520–529PubMedCrossRefGoogle Scholar
  23. 23.
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity, Nature 499, 295–300CrossRefGoogle Scholar
  24. 24.
    Hendel T, Mank M, Schnell B, Griesbeck O, Borst A, Reiff DF (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411PubMedCrossRefGoogle Scholar
  25. 25.
    Pologruto TA, Yasuda R, Svoboda K (2004) Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J Neurosci 24:9572–9579PubMedCrossRefGoogle Scholar
  26. 26.
    Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hübener M (2007) Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54:961–972PubMedCrossRefGoogle Scholar
  28. 28.
    Shevtsova Z, Malik JM, Michel U, Bahr M, Kügler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90:53–59PubMedCrossRefGoogle Scholar
  29. 29.
    Nathanson JL, Yanagawa Y, Obata K, Callaway EM (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:62–68PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lütcke H, Murayama M, Hahn T, Margolis DJ, Astori S, Zum Alten Borgloh SM, Gobel W, Yang Y, Tang W, Kügler S, Sprengel R, Nagai T, Miyawaki A, Larkum ME, Helmchen F, Hasan MT (2010) Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front Neural Circuits 4:9PubMedCentralPubMedGoogle Scholar
  33. 33.
    O’Connor DH, Peron SP, Huber D, Svoboda K (2010) Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67:1048–1061PubMedCrossRefGoogle Scholar
  34. 34.
    Petreanu L, Gutnisky DA, Huber D, Xu NL, O’Connor DH, Tian L, Looger L, Svoboda K (2012) Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489:299–303PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Wallace DJ, Meyer zum Alten Borgloh S, Astori S, Yang Y, Bausen M, Kügler S, Palmer AE, Tsien RY, Sprengel R, Kerr JN, Denk W, Hasan MT (2008) Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Methods 5:797–804PubMedCrossRefGoogle Scholar
  36. 36.
    Xu NL, Harnett MT, Williams SR, Huber D, O’Connor DH, Svoboda K, Magee JC (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492(7428):247–251PubMedCrossRefGoogle Scholar
  37. 37.
    Hübener M, Bonhoeffer T (2010) Searching for engrams. Neuron 67:363–371PubMedCrossRefGoogle Scholar
  38. 38.
    Zariwala HA, Borghuis BG, Hoogland TM, Madisen L, Tian L, De Zeeuw CI, Zeng H, Looger LL, Svoboda K, Chen TW (2012) A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J Neurosci 32:3131–3141PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Chen Q, Cichon J, Wang W, Qiu L, Lee SJ, Campbell NR, Destefino N, Goard MJ, Fu Z, Yasuda R, Looger LL, Arenkiel BR, Gan WB, Feng G (2012) Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76:297–308PubMedCrossRefGoogle Scholar
  40. 40.
    Wolfe J, Houweling AR, Brecht M (2010) Sparse and powerful cortical spikes. Curr Opin Neurobiol 20:306–312PubMedCrossRefGoogle Scholar
  41. 41.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedCrossRefGoogle Scholar
  42. 42.
    Yamada Y, Michikawa T, Hashimoto M, Horikawa K, Nagai T, Miyawaki A, Hausser M, Mikoshiba K (2011) Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells and cerebellar Purkinje cells. Front Cell Neurosci 5:18PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Ohkura, M., Sasaki, T., Sadakari, J., Gengyo-Ando, K., Kagawa-Nagamura, Y., Kobayashi, C., Ikegaya, Y., and Nakai, J. (2012) Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals, PLoS One 7, e51286CrossRefGoogle Scholar
  44. 44.
    Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101:10554–10559PubMedCrossRefGoogle Scholar
  45. 45.
    Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat Methods 7:729–732PubMedCrossRefGoogle Scholar
  47. 47.
    Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108:1550–1564PubMedCrossRefGoogle Scholar
  48. 48.
    Barth AL, Poulet JF (2012) Experimental evidence for sparse firing in the neocortex. Trends Neurosci 35:345–355PubMedCrossRefGoogle Scholar
  49. 49.
    Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hubener M, Keck T, Knott G, Lee WC, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13:1433–1440PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Stettler DD, Yamahachi H, Li W, Denk W, Gilbert CD (2006) Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49:877–887PubMedCrossRefGoogle Scholar
  52. 52.
    Yamahachi H, Marik SA, McManus JN, Denk W, Gilbert CD (2009) Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 64:719–729PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Drew PJ, Shih AY, Driscoll JD, Knutsen PM, Blinder P, Davalos D, Akassoglou K, Tsai PS, Kleinfeld D (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7:981–984PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Schwarz C, Hentschke H, Butovas S, Haiss F, Stuttgen MC, Gerdjikov TV, Bergner CG, Waiblinger C (2010) The head-fixed behaving rat—procedures and pitfalls. Somatosens Mot Res 27:131–148PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan WB (2010) Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5:201–208PubMedCrossRefGoogle Scholar
  56. 56.
    Xu HT, Pan F, Yang G, Gan WB (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551PubMedCrossRefGoogle Scholar
  57. 57.
    Lowenstein PR, Mandel RJ, Xiong WD, Kroeger K, Castro MG (2007) Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions. Curr Gene Ther 7:347–360PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Reimsnider S, Manfredsson FP, Muzyczka N, Mandel RJ (2007) Time course of transgene expression after intrastriatal pseudotyped rAAV2/1, rAAV2/2, rAAV2/5, and rAAV2/8 transduction in the rat. Mol Ther 15:1504–1511PubMedCrossRefGoogle Scholar
  59. 59.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMedCrossRefGoogle Scholar
  60. 60.
    Kerr JN, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9:195–205PubMedCrossRefGoogle Scholar
  61. 61.
    Engelbrecht CJ, Johnston RS, Seibel EJ, Helmchen F (2008) Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt Express 16:5556–5564PubMedCrossRefGoogle Scholar
  62. 62.
    Piyawattanametha W, Cocker ED, Burns LD, Barretto RP, Jung JC, Ra H, Solgaard O, Schnitzer MJ (2009) In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Opt Lett 34:2309–2311PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Sawinski J, Wallace DJ, Greenberg DS, Grossmann S, Denk W, Kerr JN (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci USA 106:19557–19562PubMedCrossRefGoogle Scholar
  64. 64.
    Euler T, Hausselt SE, Margolis DJ, Breuninger T, Castell X, Detwiler PB, Denk W (2009) Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch 457:1393–1414PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Heider B, Nathanson JL, Isacoff EY, Callaway EM, Siegel RM (2010) Two-photon imaging of calcium in virally transfected striate cortical neurons of behaving monkey. PLoS One 5:e13829PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Mayrhofer JM, Skreb V, von der Behrens W, Musall S, Weber B, Haiss F (2013) Novel two-alternative forced choice paradigm for bilateral vibrotactile whisker frequency discrimination in head-fixed mice and rats. J Neurophysiol 109:273–284PubMedCrossRefGoogle Scholar
  67. 67.
    Dombeck DA, Graziano MS, Tank DW (2009) Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J Neurosci 29:13751–13760PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Keller GB, Bonhoeffer T, Hübener M (2012) Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74:809–815PubMedCrossRefGoogle Scholar
  69. 69.
    Niell CM, Stryker MP (2010) Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–479PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsaki G (2012) Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 15:769–775PubMedCrossRefGoogle Scholar
  71. 71.
    Nimmerjahn A, Mukamel EA, Schnitzer MJ (2009) Motor behavior activates Bergmann glial networks. Neuron 62:400–412PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461:941–946PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Haiss F, Schwarz C (2005) Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex. J Neurosci 25:1579–1587PubMedCrossRefGoogle Scholar
  74. 74.
    Hentschke H, Haiss F, Schwarz C (2006) Central signals rapidly switch tactile processing in rat barrel cortex during whisker movements. Cereb Cortex 16:1142–1156PubMedCrossRefGoogle Scholar
  75. 75.
    Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65:422–435PubMedCrossRefGoogle Scholar
  76. 76.
    Greenberg DS, Kerr JN (2009) Automated correction of fast motion artifacts for two-photon imaging of awake animals. J Neurosci Methods 176:1–15PubMedCrossRefGoogle Scholar
  77. 77.
    Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7:399–405PubMedCrossRefGoogle Scholar
  78. 78.
    O’Connor DH, Huber D, Svoboda K (2009) Reverse engineering the mouse brain. Nature 461:923–929PubMedCrossRefGoogle Scholar
  79. 79.
    Lütcke H, Margolis DJ, Helmchen F (2013) Steady or changing? Long-term monitoring of neuronal population activity. Trends Neurosci 36(7):375–384PubMedCrossRefGoogle Scholar
  80. 80.
    Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Hasan MT, Friedrich RW, Euler T, Larkum ME, Giese G, Both M, Duebel J, Waters J, Bujard H, Griesbeck O, Tsien RY, Nagai T, Miyawaki A, Denk W (2004) Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2:e163PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Heim N, Garaschuk O, Friedrich MW, Mank M, Milos RI, Kovalchuk Y, Konnerth A, Griesbeck O (2007) Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat Methods 4:127–129PubMedCrossRefGoogle Scholar
  83. 83.
    Han X, Qian X, Bernstein JG, Zhou HH, Franzesi GT, Stern P, Bronson RT, Graybiel AM, Desimone R, Boyden ES (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62:191–198PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ (2009) Advances in light microscopy for neuroscience. Annu Rev Neurosci 32:435–506PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Scanziani M, Häusser M (2009) Electrophysiology in the age of light. Nature 461:930–939PubMedCrossRefGoogle Scholar
  86. 86.
    Cheng A, Goncalves JT, Golshani P, Arisaka K, Portera-Cailliau C (2011) Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat Methods 8:139–142PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Kawakami R, Sawada K, Sato A, Hibi T, Kozawa Y, Sato S, Yokoyama H, Nemoto T (2013) Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser. Sci Rep 3:1014PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Mittmann W, Wallace DJ, Czubayko U, Herb JT, Schaefer AT, Looger LL, Denk W, Kerr JN (2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat Neurosci 14:1089–1093PubMedCrossRefGoogle Scholar
  89. 89.
    Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, Xu C (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7:205–209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David J. Margolis
    • 1
  • Henry Lütcke
    • 1
  • Fritjof Helmchen
    • 1
  • Bruno Weber
    • 2
  • Florent Haiss
    • 2
  1. 1.Brain Research InstituteUniversity of ZurichZurichSwitzerland
  2. 2.Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland

Personalised recommendations