Skip to main content

Investigation of G Protein-Coupled Receptor Function and Regulation Using Antisense

  • Protocol
  • First Online:
G Protein-Coupled Receptor Genetics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Delineation of GPCR function and regulation has relied heavily on the available pharmacological tools to manipulate GPCR activity, inhibit GPCR interacting proteins, or modulate downstream signaling molecules. Where appropriate agents are unobtainable, alternative molecular methods have been developed to determine the specific roles that individual proteins play in GPCR regulation and signaling. One such method utilizes RNA interference (RNAi) to suppress the expression of endogenous target proteins. The discovery that double-stranded (ds)RNA was able to deplete cellular protein expression paved the way for the development of modern RNAi methods. Initial experiments utilized long strands of dsRNA, which were cleaved via the action of an RNase named Dicer, into shorter 21–23 nucleotide RNAs, termed small interfering (si)RNAs. These active RNAs are unwound and incorporated into the RNA-induced silencing complex, wherein the antisense targeting strand binds to the complementary region of the target protein mRNA, promoting its subsequent destruction. Modern RNAi techniques mimic this process introducing carefully designed highly specific dsRNA constructs to effectively silence target gene expression within cells, offering an attractive alternative to the expensive development and maintenance of knockout animals. The use of RNAi has revolutionized the study of GPCR function and regulation circumventing the concerns over “off-target” effects which surround the overexpression of wild-type or inactive versions of target proteins. However, most importantly RNAi enables the precise identification of the roles that endogenous proteins play in cellular processes without the requirement for knockout animals. This chapter will examine how RNAi techniques have shed light on not only the function of GPCRs but also how gene silencing has uncovered novel roles for proteins that regulate GPCR responsiveness and signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willets JM, Challiss RM, Nahorski SR (2003) Non-visual GRKs: are we seeing the whole picture? Trends Pharmacol Sci 24:626–633

    Article  CAS  PubMed  Google Scholar 

  2. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  CAS  PubMed  Google Scholar 

  3. DeWire SM, Ahn S, Lefkowitz RJ et al (2007) β-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  CAS  PubMed  Google Scholar 

  4. Guo S, Kemphues KJ (1995) PAR-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    Article  CAS  PubMed  Google Scholar 

  5. Fire A, Montgomery MK, Kostas SA et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  6. Sen GL, Blau HM (2006) A brief history of RNAi: the silence of the genes. FASEB J 20:1293–1299

    Article  CAS  PubMed  Google Scholar 

  7. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    Article  CAS  PubMed  Google Scholar 

  9. Shim MS, Kwon YJ (2010) Efficient and targeted delivery of siRNA in vivo. FEBS J 277:4814–4827

    Article  CAS  PubMed  Google Scholar 

  10. Desai AN, Standifer KM, Eikenburg DC (2004) Simultaneous α2B- and β2-adrenoceptor activation sensitizes the α2B-adrenoceptor for agonist-induced down-regulation. J Pharmacol Exp Ther 311:794–802

    Article  CAS  PubMed  Google Scholar 

  11. Pasquinelli AE (2002) MicroRNAs: deviants no longer. Trends Genet 18:171–173

    Article  CAS  PubMed  Google Scholar 

  12. Denli AM, Topps BB, Plasterk RH et al (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    Article  CAS  PubMed  Google Scholar 

  13. Gregory RI, Yan K, Amuthan G et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  CAS  PubMed  Google Scholar 

  14. Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  CAS  PubMed  Google Scholar 

  15. Han J, Lee Y, Yeom KH et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  CAS  PubMed  Google Scholar 

  16. Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz DS, Hutvagner G, Haley B et al (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 10:537–548

    Article  CAS  PubMed  Google Scholar 

  19. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  CAS  PubMed  Google Scholar 

  20. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4:1–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Morris GE, Nelson CP, Everitt D et al (2011) G protein-coupled receptor kinase 2 and arrestin2 regulate arterial smooth muscle P2Y-purinoceptor signalling. Cardiovasc Res 89:193–203

    Article  CAS  PubMed  Google Scholar 

  22. Morris GE, Nelson CP, Brighton PJ et al (2012) Arrestins 2 and 3 differentially regulate ETA and P2Y2 receptor-mediated cell signaling and migration in arterial smooth muscle. Am J Physiol Cell Physiol 302:C723–C734

    Article  CAS  PubMed  Google Scholar 

  23. Saxena H, Deshpande DA, Tiegs BC et al (2012) The GPCR OGR1 (GPR68) mediates diverse signalling and contraction of airway smooth muscle in response to small reductions in extracellular pH. Br J Pharmacol 166:981–990

    Article  CAS  PubMed  Google Scholar 

  24. Dann SG, Selvaraj A, Thomas G (2007) mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13:252–259

    Article  CAS  PubMed  Google Scholar 

  25. Wauson EM, Zaganjor E, Lee AY et al (2012) The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol Cell 47:851–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Samson WK, Zhang JV, Avsian-Kretchmer O et al (2008) Neuronostatin encoded by the somatostatin gene regulates neuronal, cardiovascular, and metabolic functions. J Biol Chem 283:31949–31959

    Article  CAS  PubMed  Google Scholar 

  27. Yosten GL, Redlinger LJ, Samson WK (2012) Evidence for an interaction of neuronostatin with the orphan G protein-coupled receptor, GPR107. Am J Physiol Regul Integr Comp Physiol 303:R941–R949

    Article  CAS  PubMed  Google Scholar 

  28. Gurevich EV, Tesmer JJ, Mushegian A et al (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Penela P, Murga C, Ribas C et al (2010) The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br J Pharmacol 160:821–832

    Article  CAS  PubMed  Google Scholar 

  30. Thal DM, Homan KT, Chen J et al (2012) Paroxetine is a direct inhibitor of G protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem Biol 7:1830–1839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Casey LM, Pistner AR, Belmonte SL et al (2010) Small molecule disruption of Gβγ signaling inhibits the progression of heart failure. Circ Res 107:532–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sterne-Marr R, Tesmer JJ, Day PW et al (2003) G protein-coupled receptor Kinase 2/Gα q/11 interaction. A novel surface on a regulator of G protein signaling homology domain for binding Gα subunits. J Biol Chem 278:6050–6058

    Article  CAS  PubMed  Google Scholar 

  33. Shih M, Malbon CC (1994) Oligodeoxynucleotides antisense to mRNA encoding protein kinase A, protein kinase C, and β-adrenergic receptor kinase reveal distinctive cell-type-specific roles in agonist-induced desensitization. Proc Natl Acad Sci U S A 91:12193–12197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Aiyar N, Disa J, Dang K et al (2000) Involvement of G protein-coupled receptor kinase-6 in desensitization of CGRP receptors. Eur J Pharmacol 403:1–7

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe H, Xu J, Bengra C et al (2002) Desensitization of human renal D1 dopamine receptors by G protein-coupled receptor kinase 4. Kidney Int 62:790–798

    Article  CAS  PubMed  Google Scholar 

  36. Willets JM, Parent JL, Benovic JL et al (1999) Selective reduction in A2 adenosine receptor desensitization following antisense-induced suppression of G protein-coupled receptor kinase 2 expression. J Neurochem 73:1781–1789

    CAS  PubMed  Google Scholar 

  37. Dautzenberg FM, Braun S, Hauger RL (2001) GRK3 mediates desensitization of CRF1 receptors: a potential mechanism regulating stress adaptation. Am J Physiol Regul Integr Comp Physiol 280:R935–R946

    CAS  PubMed  Google Scholar 

  38. Nagayama Y, Takana K, Hara T et al (1996) Involvement of G protein-coupled receptor kinase 5 in homologous desensitization of the thyrotropin receptor. J Biol Chem 271:10143–10148

    Article  CAS  PubMed  Google Scholar 

  39. Mundell SJ, Benovic JL, Kelly E (1997) A dominant negative mutant of the G protein-coupled receptor kinase 2 selectively attenuates adenosine A2 receptor desensitization. Mol Pharmacol 51:991–998

    CAS  PubMed  Google Scholar 

  40. Chopineau M, Martinat N, Troispoux C et al (1997) Expression of horse and donkey LH in COS-7 cells: evidence for low FSH activity in donkey LH compared with horse LH. J Endocrinol 152:371–377

    Article  CAS  PubMed  Google Scholar 

  41. Ren XR, Reiter E, Ahn S et al (2005) Different G protein-coupled receptor kinases govern G protein and β-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci U S A 102:1448–1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kim J, Ahn S, Ren XR et al (2005) Functional antagonism of different G protein-coupled receptor kinases for β-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A 102:1442–1447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Nobles KN, Xiao K, Ahn S et al (2011) Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci Signal 4:ra51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Guo Q, Subramanian H, Gupta K et al (2011) Regulation of C3a receptor signaling in human mast cells by G protein coupled receptor kinases. PLoS One 6:e22559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Morris GE, Nelson CP, Standen NB et al (2010) Endothelin signalling in arterial smooth muscle is tightly regulated by G protein-coupled receptor kinase 2. Cardiovasc Res 85:424–433

    Article  CAS  PubMed  Google Scholar 

  46. Freedman NJ, Ament AS, Oppermann M et al (1997) Phosphorylation and desensitization of human endothelin A and B receptors. Evidence for G protein-coupled receptor kinase specificity. J Biol Chem 272:17734–17743

    Article  CAS  PubMed  Google Scholar 

  47. Smith MP, Ayad VJ, Mundell SJ et al (2006) Internalization and desensitization of the oxytocin receptor is inhibited by Dynamin and clathrin mutants in human embryonic kidney 293 cells. Mol Endocrinol 20:379–388

    Article  CAS  PubMed  Google Scholar 

  48. Willets JM, Brighton PJ, Mistry R et al (2009) Regulation of oxytocin receptor responsiveness by G protein-coupled receptor kinase 6 in human myometrial smooth muscle. Mol Endocrinol 23:1272–1280

    Article  CAS  PubMed  Google Scholar 

  49. Tobin AB, Butcher AJ, Kong KC (2008) Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 29:413–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hasbi A, Devost D, Laporte SA et al (2004) Real-time detection of interactions between the human oxytocin receptor and G protein-coupled receptor kinase-2. Mol Endocrinol 18:1277–1286

    Article  CAS  PubMed  Google Scholar 

  51. Bremnes T, Paasche JD, Mehlim A et al (2000) Regulation and intracellular trafficking pathways of the endothelin receptors. J Biol Chem 275:17596–17604

    Article  CAS  PubMed  Google Scholar 

  52. Mundell SJ, Loudon R, Benovic JL (1999) Characterization of G protein-coupled receptor regulation in antisense mRNA-expressing cells with reduced arrestin levels. Biochemistry 38:8723–8732

    Article  CAS  PubMed  Google Scholar 

  53. Ahn S, Nelson CD, Runyan Garrison T et al (2003) Desensitization, internalization, and signaling functions of β-arrestins demonstrated by RNA interference. Proc Natl Acad Sci U S A 100:1740–1744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Deshpande DA, Theriot BS, Penn RB et al (2008) β-arrestins specifically constrain β2-adrenergic receptor signaling and function in airway smooth muscle. FASEB J 22:2134–2141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Perez-Reyes N, Halbert CL, Smith PP et al (1992) Immortalization of primary human smooth muscle cells. Proc Natl Acad Sci U S A 89:1224–1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Brighton PJ, Rana S, Challiss RA et al (2011) Arrestins differentially regulate histamine- and oxytocin-evoked phospholipase C and mitogen-activated protein kinase signalling in myometrial cells. Br J Pharmacol 162:1603–1617

    Article  CAS  PubMed  Google Scholar 

  57. Grotegut CA, Feng L, Mao L et al (2011) β-arrestin mediates oxytocin receptor signaling, which regulates uterine contractility and cellular migration. Am J Physiol Endocrinol Metab 300:E468–E477

    Article  CAS  PubMed  Google Scholar 

  58. DeFea KA (2011) β-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal 23:621–629

    Article  CAS  PubMed  Google Scholar 

  59. Zhang X, Wang F, Chen X et al (2005) β-arrestin1 and β-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of δ-opioid receptors. J Neurochem 95:169–178

    Article  CAS  PubMed  Google Scholar 

  60. Shukla AK, Violin JD, Whalen EJ et al (2008) Distinct conformational changes in β-arrestin report biased agonism at seven-transmembrane receptors. Proc Natl Acad Sci U S A 105:9988–9993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. McDonald PH, Chow CW, Miller WE et al (2000) β-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577

    Article  CAS  PubMed  Google Scholar 

  62. DeFea KA, Zalevsky J, Thoma JS et al (2000) β-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281

    Article  CAS  PubMed  Google Scholar 

  63. Luttrell LM, Roudabush FL, Choy EW et al (2001) Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc Natl Acad Sci U S A 98:2449–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Wei H, Ahn S, Shenoy S et al (2003) Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci U S A 100:10782–10787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Kohout TA, Nicholas SL, Perry SJ et al (2004) Differential desensitization, receptor phosphorylation, β-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279:23214–23222

    Article  CAS  PubMed  Google Scholar 

  66. Zidar DA, Violin JD, Whalen EJ et al (2009) Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci U S A 106:9649–9654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Sun Y, Cheng Z, Ma L et al (2002) β-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 277:49212–49219

    Article  CAS  PubMed  Google Scholar 

  68. Bruchas MR, Macey TA, Lowe JD et al (2006) Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 281:18081–18089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Gong K, Li Z, Xu M et al (2008) A novel protein kinase A-independent, β-arrestin-1-dependent signaling pathway for p38 mitogen-activated protein kinase activation by β2-adrenergic receptors. J Biol Chem 283:29028–29036

    Article  CAS  PubMed  Google Scholar 

  70. Lynch MJ, Baillie GS, Mohamed A et al (2005) RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with β arrestin to control the protein kinase A/AKAP79-mediated switching of the β2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 280:33178–33189

    Article  CAS  PubMed  Google Scholar 

  71. Barnes WG, Reiter E, Violin JD et al (2005) β-arrestin 1 and Gαq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J Biol Chem 280:8041–8050

    Article  CAS  PubMed  Google Scholar 

  72. Cheung R, Malik M, Ravyn V et al (2009) An arrestin-dependent multi-kinase signaling complex mediates MIP-1β/CCL4 signaling and chemotaxis of primary human macrophages. J Leukoc Biol 86:833–845

    Article  CAS  PubMed  Google Scholar 

  73. Zoudilova M, Kumar P, Ge L et al (2010) β-arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J Biol Chem 285:14318–14329

    Article  CAS  PubMed  Google Scholar 

  74. Kim J, Ahn S, Ragajopal K et al (2009) Independent β-arrestin2 and Gq/protein kinase Cζ pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the epidermal growth factor receptor. J Biol Chem 284:11953–11962

    Article  CAS  PubMed  Google Scholar 

  75. McLennan GP, Kiss A, Miyatake M et al (2008) Kappa opioids promote the proliferation of astrocytes via Gβγ and β-arrestin 2-dependent MAPK-mediated pathways. J Neurochem 107:1753–1765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Heinrich EL, Lee W, Lu J et al (2012) Chemokine CXCL12 activates dual CXCR4 and CXCR7-mediated signaling pathways in pancreatic cancer cells. J Transl Med 10:68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Talbot J, Joly E, Prentki M et al (2012) β-Arrestin1-mediated recruitment of c-Src underlies the proliferative action of glucagon-like peptide-1 in pancreatic beta INS832/13 cells. Mol Cell Endocrinol 364:65–70

    Article  CAS  PubMed  Google Scholar 

  78. Willets JM (2011) Approaches to study GPCR regulation in native systems. Methods Mol Biol 746:99–112

    Article  CAS  PubMed  Google Scholar 

  79. Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855

    Article  CAS  PubMed  Google Scholar 

  80. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140

    CAS  PubMed  Google Scholar 

  81. Jeong JH, Park TG, Kim SH (2011) Self-assembled and nanostructured siRNA delivery systems. Pharm Res 28:2072–2085

    Article  CAS  PubMed  Google Scholar 

  82. Makinen PI, Koponen JK, Karkainen AM et al (2006) Stable RNA interference: comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J Gene Med 8:433–441

    Article  CAS  PubMed  Google Scholar 

  83. Reiter E, Ahn S, Shukla AK et al (2012) Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Kenakin T (2010) G protein coupled receptors as allosteric proteins and the role of allosteric modulators. J Recept Signal Transduct Res 30:313–321

    Article  CAS  PubMed  Google Scholar 

  85. Walters RW, Shukla AR, Kovacs JJ et al (2009) β-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J Clin Invest 119:1312–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare that they have no conflict of interest financial or otherwise. They would also like to thank the British Heart Foundation for continued funding.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Willets, J., Nash, C. (2014). Investigation of G Protein-Coupled Receptor Function and Regulation Using Antisense. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics