Skip to main content

Examining the Dynamic Evolution of G Protein-Coupled Receptors

  • Protocol
  • First Online:
Book cover G Protein-Coupled Receptor Genetics

Abstract

The valuable source of large-scale genomic information initiated attempts to identify the origin(s) of G protein-coupled receptors (GPCR), count and categorize those genes, and follow their evolutionary history. Being present in fungi, plants, and unicellular eukaryotes, GPCR must have evolved before the plant-fungi-animal split about 1.5 billion years ago. Phylogenetic analyses revealed several kinds of evolutionary patterns that occurred during GPCR evolution including one-to-one orthologous relationships, species-specific gene expansion, and episodic duplication of the entire GPCR repertoire in certain species lineages. These data document the highly dynamic process of birth and death of GPCR genes since hundreds of millions of years. Genetic drift and selective forces have shaped the individual structure of a given receptor gene but also of the species-specific receptor repertoire – a process that is still ongoing. These processes have left footprints in the genomic sequence that can be detected by bioinformatic methods and may help to interpret receptor function in the light of a given species in its environment. Reasonable intraspecies sequence variability in GPCR is either physiologically tolerated or promotes individual phenotypes and adaptation, but also susceptibilities for diseases. Therefore, the impact of GPCR variants in epistatic networks will be an important task of future GPCR research. The chapter summarizes evolutionary processes working on GPCR genes and sheds light on their consequences at the levels of receptor structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schioth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142:94–101

    PubMed  Google Scholar 

  2. Allentoft ME, Collins M, Harker D et al (2012) The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc Biol Sci 279:4724–4733

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Oesterhelt D (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol 8:489–500

    CAS  PubMed  Google Scholar 

  4. Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494

    CAS  PubMed  Google Scholar 

  5. Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Waschuk SA, Bezerra AG, Shi L et al (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci U S A 102:6879–6883

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Soppa J (1994) Two hypotheses–one answer. Sequence comparison does not support an evolutionary link between halobacterial retinal proteins including bacteriorhodopsin and eukaryotic G-protein-coupled receptors. FEBS Lett 342:7–11

    CAS  PubMed  Google Scholar 

  8. Ea E (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3:573–581

    Google Scholar 

  9. Fujisawa Y, Kato H, Iwasaki Y (2001) Structure and function of heterotrimeric G proteins in plants. Plant Cell Physiol 42:789–794

    CAS  PubMed  Google Scholar 

  10. Kim JY, Haastert PV, Devreotes PN (1996) Social senses: G-protein-coupled receptor signaling pathways in Dictyostelium discoideum. Chem Biol 3:239–243

    CAS  PubMed  Google Scholar 

  11. Violin JD, Lefkowitz RJ (2007) Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 28:416–422

    CAS  PubMed  Google Scholar 

  12. Strotmann R, Schrock K, Boselt I et al (2011) Evolution of GPCR: change and continuity. Mol Cell Endocrinol 331:170–178

    CAS  PubMed  Google Scholar 

  13. Nordstrom KJ, Sallman Almen M, Edstam M et al (2011) Independent HHsearch, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol 28:2471–2480

    PubMed  Google Scholar 

  14. Krishnan A, Almen MS, Fredriksson R et al (2012) The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One 7:e29817

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Nordstrom KJ, Lagerstrom MC, Waller LM et al (2009) The Secretin GPCRs descended from the family of Adhesion GPCRs. Mol Biol Evol 26:71–84

    PubMed  Google Scholar 

  16. Langenhan T, Promel S, Mestek L et al (2009) Latrophilin signaling links anterior-posterior tissue polarity and oriented cell divisions in the C. elegans embryo. Dev Cell 17:494–504

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Metpally RP, Sowdhamini R (2005) Cross genome phylogenetic analysis of human and Drosophila G protein-coupled receptors: application to functional annotation of orphan receptors. BMC Genomics 6:106

    PubMed Central  PubMed  Google Scholar 

  18. Metpally RP, Sowdhamini R (2005) Genome wide survey of G protein-coupled receptors in Tetraodon nigroviridis. BMC Evol Biol 5:41

    PubMed Central  PubMed  Google Scholar 

  19. Kamesh N, Aradhyam GK, Manoj N (2008) The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis. BMC Evol Biol 8:129

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Schoneberg T, Hermsdorf T, Engemaier E et al (2007) Structural and functional evolution of the P2Y(12)-like receptor group. Purinergic Signal 3:255–268

    PubMed Central  PubMed  Google Scholar 

  21. Gloriam DE, Fredriksson R, Schioth HB (2007) The G protein-coupled receptor subset of the rat genome. BMC Genomics 8:338

    PubMed Central  PubMed  Google Scholar 

  22. Kishida T (2008) Pattern of the divergence of olfactory receptor genes during tetrapod evolution. PLoS One 3:e2385

    PubMed Central  PubMed  Google Scholar 

  23. Gilad Y, Przeworski M, Lancet D (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:e5

    PubMed Central  PubMed  Google Scholar 

  24. Hayden S, Bekaert M, TA C et al (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20:1–9

    CAS  PubMed  Google Scholar 

  25. Steiger SS, Kuryshev VY, Stensmyr MC et al (2009) A comparison of reptilian and avian olfactory receptor gene repertoires: species-specific expansion of group gamma genes in birds. BMC Genomics 10:446

    PubMed Central  PubMed  Google Scholar 

  26. Chiari Y, Cahais V, Galtier N et al (2012) Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 10:65

    PubMed Central  PubMed  Google Scholar 

  27. Wurm Y, Wang J, Riba-Grognuz O et al (2011) The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci U S A 108:5679–5684

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Ji Y, Zhang Z, Hu Y (2009) The repertoire of G-protein-coupled receptors in Xenopus tropicalis. BMC Genomics 10:263

    PubMed Central  PubMed  Google Scholar 

  29. Hwang JI, Moon MJ, Park S et al (2013) Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication. Mol Biol Evol 30:1119–1130

    CAS  PubMed  Google Scholar 

  30. Semyonov J, Park JI, Cl C et al (2008) GPCR genes are preferentially retained after whole genome duplication. PLoS One 3:e1903

    PubMed Central  PubMed  Google Scholar 

  31. Huang Y, Zheng Y, Su Z et al (2009) Differences in duplication age distributions between human GPCRs and their downstream genes from a network prospective. BMC Genomics 10(Suppl 1):S14

    PubMed Central  PubMed  Google Scholar 

  32. Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151

    CAS  PubMed  Google Scholar 

  33. Pawson AJ, Morgan K, Maudsley SR et al (2003) Type II gonadotrophin-releasing hormone (GnRH-II) in reproductive biology. Reproduction 126:271–278

    CAS  PubMed  Google Scholar 

  34. Hashiguchi Y, Nishida M (2007) Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol Biol Evol 24:2099–2107

    CAS  PubMed  Google Scholar 

  35. Jiang P, Josue J, Li X et al (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci U S A 109:4956–4961

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486

    PubMed  Google Scholar 

  37. Staubert C, Boselt I, Bohnekamp J et al (2010) Structural and functional evolution of the trace amine-associated receptors TAAR3, TAAR4 and TAAR5 in primates. PLoS One 5:e11133

    PubMed Central  PubMed  Google Scholar 

  38. Starback P, Wraith A, Eriksson H et al (2000) Neuropeptide Y receptor gene y6: multiple deaths or resurrections? Biochem Biophys Res Commun 277:264–269

    CAS  PubMed  Google Scholar 

  39. Martin RD, Soligo C, Tavare S (2007) Primate origins: implications of a cretaceous ancestry. Folia Primatol (Basel) 78:277–296

    Google Scholar 

  40. Rompler H, Schulz A, Pitra C et al (2005) The rise and fall of the chemoattractant receptor GPR33. J Biol Chem 280:31068–31075

    PubMed  Google Scholar 

  41. Gaillard I, Rouquier S, Chavanieu A et al (2004) Amino-acid changes acquired during evolution by olfactory receptor 912–93 modify the specificity of odorant recognition. Hum Mol Genet 13:771–780

    CAS  PubMed  Google Scholar 

  42. Rompler H, Yu HT, Arnold A et al (2006) Functional consequences of naturally occurring DRY motif variants in the mammalian chemoattractant receptor GPR33. Genomics 87:724–732

    PubMed  Google Scholar 

  43. Torrents D, Suyama M, Zdobnov E et al (2003) A genome-wide survey of human pseudogenes. Genome Res 13:2559–2567

    CAS  PubMed  Google Scholar 

  44. Pei B, Sisu C, Frankish A et al (2012) The GENCODE pseudogene resource. Genome Biol 13:R51

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Muro EM, Mah N, Andrade-Navarro MA (2011) Functional evidence of post-transcriptional regulation by pseudogenes. Biochimie 93:1916–1921

    CAS  PubMed  Google Scholar 

  46. Olsen MA, Schechter LE (1999) Cloning, mRNA localization and evolutionary conservation of a human 5-HT7 receptor pseudogene. Gene 227:63–69

    CAS  PubMed  Google Scholar 

  47. Bard JA, Nawoschik SP, O’dowd BF et al (1995) The human serotonin 5-hydroxytryptamine1D receptor pseudogene is transcribed. Gene 153:295–296

    CAS  PubMed  Google Scholar 

  48. Young JM, Shykind BM, Lane RP et al (2003) Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression levels. Genome Biol 4:R71

    PubMed Central  PubMed  Google Scholar 

  49. Abecasis GR, Auton A, Brooks LD et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    PubMed  Google Scholar 

  50. Gibbs RA, Taylor JF, Van Tassell CP et al (2009) Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324:528–532

    CAS  PubMed  Google Scholar 

  51. Yalcin B, Nicod J, Bhomra A et al (2010) Commercially available outbred mice for genome-wide association studies. PLoS Genet 6:e1001085

    PubMed Central  PubMed  Google Scholar 

  52. Grossman SR, Andersen KG, Shlyakhter I et al (2013) Identifying recent adaptations in large-scale genomic data. Cell 152:703–713

    CAS  PubMed  Google Scholar 

  53. Hirschhorn JN, Gajdos ZK (2011) Genome-wide association studies: results from the first few years and potential implications for clinical medicine. Annu Rev Med 62:11–24

    CAS  PubMed  Google Scholar 

  54. Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329–342

    CAS  PubMed  Google Scholar 

  55. Bernardi G, Wiley EO, Mansour H et al (2012) The fishes of Genome 10K. Mar Genomics 7:3–6

    PubMed  Google Scholar 

  56. Anonymous (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100:659–674

    Google Scholar 

  57. Green RE, Krause J, Ptak SE et al (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444:330–336

    CAS  PubMed  Google Scholar 

  58. Meyer M, Kircher M, Mt G et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Miller W, Drautz DI, Ratan A et al (2008) Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387–390

    CAS  PubMed  Google Scholar 

  60. Rohland N, Reich D, Mallick S et al (2010) Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLoS Biol 8:e1000564

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Noonan JP, Hofreiter M, Smith D et al (2005) Genomic sequencing of Pleistocene cave bears. Science 309:597–599

    CAS  PubMed  Google Scholar 

  62. Grandy DK, Litt M, Allen L et al (1989) The human dopamine D2 receptor gene is located on chromosome 11 at q22-q23 and identifies a TaqI RFLP. Am J Hum Genet 45:778–785

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Jensen S, Plaetke R, Holik J et al (1992) Linkage analysis of the D1 dopamine receptor gene and manic depression in six families. Hum Hered 42:269–275

    CAS  PubMed  Google Scholar 

  64. Schoneberg T, Schulz A, Biebermann H et al (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104:173–206

    PubMed  Google Scholar 

  65. Lalueza-Fox C, Rompler H, Caramelli D et al (2007) A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318:1453–1455

    CAS  PubMed  Google Scholar 

  66. Rompler H, Rohland N, Lalueza-Fox C et al (2006) Nuclear gene indicates coat-color polymorphism in mammoths. Science 313:62

    CAS  PubMed  Google Scholar 

  67. Kreuchwig A, Kleinau G, Kreuchwig F et al (2011) Research resource: update and extension of a glycoprotein hormone receptors web application. Mol Endocrinol 25:707–712

    CAS  PubMed  Google Scholar 

  68. Pidasheva S, D’souza-LI L, Canaff L et al (2004) CASRdb: calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 24:107–111

    CAS  PubMed  Google Scholar 

  69. Kazius J, Wurdinger K, Van Iterson M et al (2008) GPCR NaVa database: natural variants in human G protein-coupled receptors. Hum Mutat 29:39–44

    CAS  PubMed  Google Scholar 

  70. Renaud G, Kircher M, Stenzel U et al (2013) freeIbis: an efficient basecaller with calibrated quality scores for Illumina sequencers. Bioinformatics 29:1208–1209

    CAS  PubMed  Google Scholar 

  71. Small KM, Seman CA, Castator A et al (2002) False positive non-synonymous polymorphisms of G-protein coupled receptor genes. FEBS Lett 516:253–256

    CAS  PubMed  Google Scholar 

  72. Tang CM, Insel PA (2005) Genetic variation in G-protein-coupled receptors–consequences for G-protein-coupled receptors as drug targets. Expert Opin Ther Targets 9:1247–1265

    CAS  PubMed  Google Scholar 

  73. Frazer KA, Ballinger DG, Cox DR et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    CAS  PubMed  Google Scholar 

  74. Nielsen R, Williamson S, Kim Y et al (2005) Genomic scans for selective sweeps using SNP data. Genome Res 15:1566–1575

    CAS  PubMed  Google Scholar 

  75. Scheinfeldt LB, Biswas S, Madeoy J et al (2011) Clusters of adaptive evolution in the human genome. Front Genet 2:1–10

    Google Scholar 

  76. Sabeti PC, Schaffner SF, Fry B et al (2006) Positive natural selection in the human lineage. Science 312:1614–1620

    CAS  PubMed  Google Scholar 

  77. Charlesworth B (2012) The effects of deleterious mutations on evolution at linked sites. Genetics 190:5–22

    CAS  PubMed  Google Scholar 

  78. Alves I, Sramkova Hanulova A, Foll M et al (2012) Genomic data reveal a complex making of humans. PLoS Genet 8:e1002837

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Schulz A, Schoneberg T (2003) The structural evolution of a P2Y-like G-protein-coupled receptor. J Biol Chem 278:35531–35541

    CAS  PubMed  Google Scholar 

  80. Boselt I, Rompler H, Hermsdorf T et al (2009) Involvement of the V2 vasopressin receptor in adaptation to limited water supply. PLoS One 4:e5573

    PubMed Central  PubMed  Google Scholar 

  81. Coster M, Wittkopf D, Kreuchwig A et al (2012) Using ortholog sequence data to predict the functional relevance of mutations in G-protein-coupled receptors. FASEB J 26: 3273–3281

    PubMed  Google Scholar 

  82. Rennison DJ, Owens GL, Taylor JS (2012) Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol 62:986–1008

    PubMed  Google Scholar 

  83. Cao J, Huang S, Qian J et al (2009) Evolution of the class C GPCR Venus flytrap modules involved positive selected functional divergence. BMC Evol Biol 9:67

    PubMed Central  PubMed  Google Scholar 

  84. Liebscher I, Muller U, Teupser D et al (2011) Altered immune response in mice deficient for the G protein-coupled receptor GPR34. J Biol Chem 286:2101–2110

    CAS  PubMed  Google Scholar 

  85. Engel KM, Schrock K, Teupser D et al (2011) Reduced food intake and body weight in mice deficient for the G protein-coupled receptor GPR82. PLoS One 6:e29400

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Herberger AL, Loretz CA (2013) Vertebrate extracellular calcium-sensing receptor evolution: selection in relation to life history and habitat. Comp Biochem Physiol Part D Genomics Proteomics 8:86–94

    CAS  PubMed  Google Scholar 

  87. Cone RD, Lu D, Koppula S et al (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51:287–318

    CAS  PubMed  Google Scholar 

  88. Pointer MA, Mundy NI (2008) Testing whether macroevolution follows microevolution: are colour differences among swans (Cygnus) attributable to variation at the MCIR locus? BMC Evol Biol 8:249

    PubMed Central  PubMed  Google Scholar 

  89. Nadeau NJ, Burke T, Mundy NI (2007) Evolution of an avian pigmentation gene correlates with a measure of sexual selection. Proc Biol Sci 274:1807–1813

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Nachman MW, Hoekstra HE, D’agostino SL (2003) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A 100:5268–5273

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Briscoe AD, Bybee SM, Bernard GD et al (2010) Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc Natl Acad Sci U S A 107:3628–3633

    PubMed Central  PubMed  Google Scholar 

  92. Steiger SS, Fidler AE, Mueller JC et al (2010) Evidence for adaptive evolution of olfactory receptor genes in 9 bird species. J Hered 101:325–333

    CAS  PubMed  Google Scholar 

  93. Moreno-Estrada A, Casals F, Ramirez-Soriano A et al (2008) Signatures of selection in the human olfactory receptor OR5I1 gene. Mol Biol Evol 25:144–154

    CAS  PubMed  Google Scholar 

  94. Olender T, Waszak SM, Viavant M et al (2012) Personal receptor repertoires: olfaction as a model. BMC Genomics 13:414

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Soranzo N, Bufe B, PC S et al (2005) Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr Biol 15:1257–1265

    CAS  PubMed  Google Scholar 

  96. Wooding S (2011) Signatures of natural selection in a primate bitter taste receptor. J Mol Evol 73:257–265

    CAS  PubMed  Google Scholar 

  97. Campbell MC, Ranciaro A, Froment A et al (2012) Evolution of functionally diverse alleles associated with PTC bitter taste sensitivity in Africa. Mol Biol Evol 29:1141–1153

    CAS  PubMed  Google Scholar 

  98. Spielman SJ, Wilke CO (2013) Membrane environment imposes unique selection pressures on transmembrane domains of G protein-coupled receptors. J Mol Evol 76:172–182

    CAS  PubMed  Google Scholar 

  99. Deville J, Rey J, Chabbert M (2009) An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors. J Mol Evol 68:475–489

    CAS  PubMed  Google Scholar 

  100. Fatakia SN, Costanzi S, Chow CC (2011) Molecular evolution of the transmembrane domains of G protein-coupled receptors. PLoS One 6:e27813

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Choi SS, Lahn BT (2003) Adaptive evolution of MRG, a neuron-specific gene family implicated in nociception. Genome Res 13: 2252–2259

    CAS  PubMed  Google Scholar 

  102. Yang S, Liu Y, Aa L et al (2005) Adaptive evolution of MRGX2, a human sensory neuron specific gene involved in nociception. Gene 352:30–35

    CAS  PubMed  Google Scholar 

  103. Wang X, Grus WE, Zhang J (2006) Gene losses during human origins. PLoS Biol 4:e52

    PubMed Central  PubMed  Google Scholar 

  104. Rompler H, Staubert C, Thor D et al (2007) G protein-coupled time travel: evolutionary aspects of GPCR research. Mol Interv 7:17–25

    PubMed  Google Scholar 

  105. Wang X, Thomas SD, Zhang J (2004) Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum Mol Genet 13:2671–2678

    CAS  PubMed  Google Scholar 

  106. Zhang J, Webb DM (2003) Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl Acad Sci U S A 100:8337–8341

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Harding RM, Healy E, Ray AJ et al (2000) Evidence for variable selective pressures at MC1R. Am J Hum Genet 66:1351–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  108. John PR, Makova K, Li WH et al (2003) DNA polymorphism and selection at the melanocortin-1 receptor gene in normally pigmented southern African individuals. Ann N Y Acad Sci 994:299–306

    CAS  PubMed  Google Scholar 

  109. Rees JL (2000) The melanocortin 1 receptor (MC1R): more than just red hair. Pigment Cell Res 13:135–140

    CAS  PubMed  Google Scholar 

  110. Gross JB, Borowsky R, Tabin CJ (2009) A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet 5:e1000326

    PubMed Central  PubMed  Google Scholar 

  111. Hoekstra HE, Hirschmann RJ, Bundey RA et al (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313:101–104

    CAS  PubMed  Google Scholar 

  112. Steiner CC, Rompler H, Boettger LM et al (2009) The genetic basis of phenotypic convergence in beach mice: similar pigment patterns but different genes. Mol Biol Evol 26:35–45

    CAS  PubMed  Google Scholar 

  113. Rosenblum EB, Rompler H, Schoneberg T et al (2010) Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proc Natl Acad Sci U S A 107:2113–2117

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    CAS  PubMed  Google Scholar 

  115. Michino M, Abola E, Brooks CL et al (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Li B, Nowak NM, Kim SK et al (2005) Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: identification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor. J Biol Chem 280: 5664–5675

    CAS  PubMed  Google Scholar 

  117. Schlinkmann KM, Honegger A, Tureci E et al (2012) Critical features for biosynthesis, stability, and functionality of a G protein-coupled receptor uncovered by all-versus-all mutations. Proc Natl Acad Sci U S A 109: 9810–9815

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Serrano-Vega MJ, Magnani F, Shibata Y et al (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A 105:877–882

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Nichols CD, Roth BL (2009) Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Front Mol Neurosci 2:16

    PubMed Central  PubMed  Google Scholar 

  120. Conklin BR, Hsiao EC, Claeysen S et al (2008) Engineering GPCR signaling pathways with RASSLs. Nat Methods 5:673–678

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Thor D, Schulz A, Hermsdorf T et al (2008) Generation of an agonistic binding site for blockers of the M(3) muscarinic acetylcholine receptor. Biochem J 412:103–112

    CAS  PubMed  Google Scholar 

  122. Liu XG, Tan LJ, Lei SF et al (2009) Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet 84:418–423

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Xi B, Chandak GR, Shen Y et al (2012) Association between common polymorphism near the MC4R gene and obesity risk: a systematic review and meta-analysis. PLoS One 7:e45731

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Reiner AP, Lettre G, Nalls MA et al (2011) Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS Genet 7:e1002108

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Tonjes A, Koriath M, Schleinitz D et al (2009) Genetic variation in GPR133 is associated with height: genome wide association study in the self-contained population of Sorbs. Hum Mol Genet 18:4662–4668

    PubMed  Google Scholar 

  126. Albayrak O, Putter C, Al V et al (2013) Common obesity risk alleles in childhood attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 162:295–305

    CAS  Google Scholar 

  127. Antoni G, Morange PE, Luo Y et al (2010) A multi-stage multi-design strategy provides strong evidence that the BAI3 locus is associated with early-onset venous thromboembolism. J Thromb Haemost 8:2671–2679

    CAS  PubMed  Google Scholar 

  128. Mells GF, Floyd JA, Morley KI et al (2011) Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 43:329–332

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Johnson AD, Yanek LR, Chen MH et al (2010) Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat Genet 42: 608–613

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

My special thanks go to all current and past members of our group who worked with us on GPCR structure-function relationships and GPCR evolution over the years. Most of our work was supported by the German Research Foundation (DFG) and the Germany Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stäubert, C., Le Duc, D., Schöneberg, T. (2014). Examining the Dynamic Evolution of G Protein-Coupled Receptors. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics