Skip to main content

Exon Sequencing of G Protein-Coupled Receptor Genes and Perspectives for Disease Treatment

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

G protein-coupled receptors (GPCRs) comprise the largest family of membrane-spanning proteins in humans with approximately 800 members. GPCRs carry out an extensive array of biological functions and are privileged drug targets. Exon sequencing identified several disease-causing loss-of-function and gain-of-function GPCR mutations in patients with rare diseases. Recent large-scale exon sequencing studies revealed the high abundance of rare GPCR mutations in the human population. Many of these rare mutations are suspected to contribute to the risk of common diseases and interindividual and ethnic differences in drug action. Functional profiling of a large number of GPCR mutants will be necessary to identify those mutants with modified function. Defining the functional defects in carriers of rare GPCR mutations will help to provide refined and personalized therapies to these patients in the future. The impact of GPCR mutations in rare and common diseases will be discussed in this review based on specific examples.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vassilatis DK, Hohmann JG, Zeng H et al (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100:4903–4908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67:1414–1425

    Article  CAS  PubMed  Google Scholar 

  3. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  PubMed  Google Scholar 

  4. Sullivan LJ, Makris GS, Dickinson P et al (1993) A new codon 15 rhodopsin gene mutation in autosomal dominant retinitis pigmentosa is associated with sectorial disease. Arch Ophthalmol 111:1512–1517

    Article  CAS  PubMed  Google Scholar 

  5. Bunge S, Wedemann H, David D et al (1993) Molecular analysis and genetic mapping of the rhodopsin gene in families with autosomal dominant retinitis pigmentosa. Genomics 17:230–233

    Article  CAS  PubMed  Google Scholar 

  6. Green SA, Cole G, Jacinto M et al (1993) A polymorphism of the human beta(2)-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 268:23116–23121

    CAS  PubMed  Google Scholar 

  7. Green SA, Turki J, Innis M (1994) Amino-terminal polymorphisms of the human ß2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry 33:9414–9419

    Article  CAS  PubMed  Google Scholar 

  8. Rana BK, Shiina T, Insel PA (2001) Genetic variations and polymorphisms of G protein-coupled receptors: functional and therapeutic implications. Annu Rev Pharmacol Toxicol 41:593–624

    Article  CAS  PubMed  Google Scholar 

  9. Thompson MD, Burnham WM, Cole DE (2005) The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 42:311–392

    Article  CAS  PubMed  Google Scholar 

  10. Vassart G, Costagliola S (2011) G protein-coupled receptors: mutations and endocrine diseases. Nat Rev Endocrinol 7:362–372

    Article  CAS  PubMed  Google Scholar 

  11. Spanakis E, Milord E, Gragnoli C (2008) AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J Cell Physiol 217:605–617

    Article  CAS  PubMed  Google Scholar 

  12. Farooqi IS, Keogh JM, Yeo GS et al (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348:1085–1095

    Article  CAS  PubMed  Google Scholar 

  13. Xiang Z, Litherland SA, Sorensen NB et al (2006) Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry 45:7277–7288

    Article  CAS  PubMed  Google Scholar 

  14. Tao YX (2010) The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev 31:506–543

    Article  CAS  PubMed  Google Scholar 

  15. Wagner MJ (2013) Rare-variant genome-wide association studies: a new frontier in genetic analysis of complex traits. Pharmacogenomics 14:413–424

    Article  CAS  PubMed  Google Scholar 

  16. Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590

    Article  CAS  PubMed  Google Scholar 

  17. Gruber CW, Muttenthaler M, Freissmuth M (2010) Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des 16:3071–3088

    Article  CAS  PubMed  Google Scholar 

  18. Johnson JA, Liggett SB (2011) Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin Pharmacol Ther 89:366–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bryson-Richardson RJ, Logan DW, Currie PD et al (2004) Large-scale analysis of gene structure in rhodopsin-like GPCRs: evidence for widespread loss of an ancient intron. Gene 338:15–23

    Article  CAS  PubMed  Google Scholar 

  20. Lee A, Rana BK, Schiffer HH et al (2003) Distribution analysis of nonsynonymous polymorphisms within the G-protein-coupled receptor gene family. Genomics 81:245–248

    Article  CAS  PubMed  Google Scholar 

  21. Small KM, Tanguay DA, Nandabalan K et al (2003) Gene and protein domain-specific patterns of genetic variability within the G-protein coupled receptor superfamily. Am J Pharmacogenomics 3:65–71

    Article  CAS  PubMed  Google Scholar 

  22. Nelson MR, Wegmann D, Ehm MG et al (2012) An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337:100–104

    Article  CAS  PubMed  Google Scholar 

  23. Chen AS, Marsh DJ, Trumbauer ME et al (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 26:97–102

    Article  CAS  PubMed  Google Scholar 

  24. Butler AA, Kesterson RA, Khong K et al (2000) A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141:3518–3521

    CAS  PubMed  Google Scholar 

  25. Huszar D, Lynch CA, Fairchild-Huntress V et al (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    Article  CAS  PubMed  Google Scholar 

  26. Gantz I, Miwa H, Konda Y et al (1993) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem 268:15174–15179

    CAS  PubMed  Google Scholar 

  27. Mountjoy KG, Wild JM (1998) Melanocortin-4 receptor mRNA expression in the developing autonomic and central nervous systems. Brain Res Dev Brain Res 107:309–314

    Article  CAS  PubMed  Google Scholar 

  28. Tao YX (2005) Molecular mechanisms of the neural melanocortin receptor dysfunction in severe early onset obesity. Mol Cell Endocrinol 239:1–14

    Article  CAS  PubMed  Google Scholar 

  29. Shinyama H, Masuzaki H, Fang H et al (2003) Regulation of melanocortin-4 receptor signaling: agonist-mediated desensitization and internalization. Endocrinology 144:1301–1314

    Article  CAS  PubMed  Google Scholar 

  30. Biebermann H, Krude H, Elsner A et al (2003) Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization. Diabetes 52:2984–2988

    Article  CAS  PubMed  Google Scholar 

  31. Srinivasan S, Lubrano-Berthelier C, Govaerts C et al (2004) Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans. J Clin Invest 114:1158–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Yeo GS, Farooqi IS, Aminian S et al (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20:111–112

    Article  CAS  PubMed  Google Scholar 

  33. Vaisse C, Clement K, Guy-Grand B et al (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20:113–114

    Article  CAS  PubMed  Google Scholar 

  34. Dempfle A, Hinney A, Heinzel-Gutenbrunner M et al (2004) Large quantitative effect of melanocortin-4 receptor gene mutations on body mass index. J Med Genet 41:795–800

    Article  CAS  PubMed  Google Scholar 

  35. Geller F, Reichwald K, Dempfle A et al (2004) Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am J Hum Genet 74:572–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Stutzmann F, Vatin V, Cauchi S et al (2007) Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: the two facets of a Janus obesity gene. Hum Mol Genet 16:1837–1844

    Article  CAS  PubMed  Google Scholar 

  37. Loos RJ, Lindgren CM, Li S et al (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40:768–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chambers JC, Elliott P, Zabaneh D et al (2008) Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet 40:716–718

    Article  CAS  PubMed  Google Scholar 

  39. Qi L, Kraft P, Hunter DJ et al (2008) The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. Hum Mol Genet 17:3502–3508

    Article  CAS  PubMed  Google Scholar 

  40. Stutzmann F, Tan K, Vatin V et al (2008) Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes 57:2511–2518

    Article  CAS  PubMed  Google Scholar 

  41. Farooqi IS, Yeo GS, Keogh JM et al (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106:271–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kobayashi H, Ogawa Y, Shintani M et al (2002) A novel homozygous missense mutation of melanocortin-4 receptor (MC4R) in a Japanese woman with severe obesity. Diabetes 51:243–246

    Article  CAS  PubMed  Google Scholar 

  43. Dubern B, Bisbis S, Talbaoui H et al (2007) Homozygous null mutation of the melanocortin-4 receptor and severe early-onset obesity. J Pediatr 150:613–617

    Article  CAS  PubMed  Google Scholar 

  44. Hinney A, Bettecken T, Tarnow P et al (2006) Prevalence, spectrum, and functional characterization of melanocortin-4 receptor gene mutations in a representative population-based sample and obese adults from Germany. J Clin Endocrinol Metab 91:1761–1769

    Article  CAS  PubMed  Google Scholar 

  45. Tarnow P, Rediger A, Brumm H et al (2008) A heterozygous mutation in the third transmembrane domain causes a dominant-negative effect on signalling capability of the MC4R. Obes Facts 1:155–162

    Article  CAS  PubMed  Google Scholar 

  46. Tao YX, Segaloff DL (2003) Functional characterization of melanocortin-4 receptor mutations associated with childhood obesity. Endocrinology 144:4544–4551

    Article  CAS  PubMed  Google Scholar 

  47. Govaerts C, Srinivasan S, Shapiro A et al (2005) Obesity-associated mutations in the melanocortin 4 receptor provide novel insights into its function. Peptides 26:1909–1919

    Article  CAS  PubMed  Google Scholar 

  48. Yeo GS, Lank EJ, Farooqi IS et al (2003) Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet 12:561–574

    Article  CAS  PubMed  Google Scholar 

  49. Fan ZC, Tao YX (2009) Functional characterization and pharmacological rescue of melanocortin-4 receptor mutations identified from obese patients. J Cell Mol Med 13:3268–3282

    Article  PubMed  Google Scholar 

  50. Hinney A, Schmidt A, Nottebom K et al (1999) Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab 84:1483–1486

    CAS  PubMed  Google Scholar 

  51. Meehan TP, Tabeta K, Du X et al (2006) Point mutations in the melanocortin-4 receptor cause variable obesity in mice. Mamm Genome 17:1162–1171

    Article  CAS  PubMed  Google Scholar 

  52. Bichet DG (2009) V2R mutations and nephrogenic diabetes insipidus. Prog Mol Biol Transl Sci 89:15–29

    Article  CAS  PubMed  Google Scholar 

  53. Arthus MF, Lonergan M, Crumley MJ et al (2000) Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 11:1044–1054

    CAS  PubMed  Google Scholar 

  54. Birnbaumer M (2001) The V2 vasopressin receptor mutations and fluid homeostasis. Cardiovasc Res 51:409–415

    Article  CAS  PubMed  Google Scholar 

  55. McKinley MJ, Johnson AK (2004) The physiological regulation of thirst and fluid intake. News Physiol Sci 19:1–6

    PubMed  Google Scholar 

  56. Charest PG, Oligny-Longpre G, Bonin H et al (2007) The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. Cell Signal 19:32–41

    Article  CAS  PubMed  Google Scholar 

  57. Hobbs HH, Russell DW, Brown MS et al (1990) The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet 24:133–170

    Article  CAS  PubMed  Google Scholar 

  58. Morello JP, Salahpour A, Laperriere A et al (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105:887–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Barak LS, Oakley RH, Laporte SA et al (2001) Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A 98:93–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Bernier V, Morello JP, Zarruk A et al (2006) Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 17:232–243

    Article  CAS  PubMed  Google Scholar 

  61. Fujiwara TM, Bichet DG (2005) Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol 16:2836–2846

    Article  CAS  PubMed  Google Scholar 

  62. Kocan M, See HB, Sampaio NG et al (2009) Agonist-independent interactions between beta-arrestins and mutant vasopressin type II receptors associated with nephrogenic syndrome of inappropriate antidiuresis. Mol Endocrinol 23:559–571

    Article  CAS  PubMed  Google Scholar 

  63. Tenenbaum J, Ayoub MA, Perkovska S et al (2009) The constitutively active V2 receptor mutants conferring NSIAD are weakly sensitive to agonist and antagonist regulation. PLoS One 4:e8383

    Article  PubMed Central  PubMed  Google Scholar 

  64. Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148:1160–1171

    Article  CAS  PubMed  Google Scholar 

  65. Prokopenko I, Langenberg C, Florez JC et al (2009) Variants in MTNR1B influence fasting glucose levels. Nat Genet 41:77–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C et al (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 41:89–94

    Article  CAS  PubMed  Google Scholar 

  67. Xia Q, Chen ZX, Wang YC et al (2012) Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: a meta-analysis. PLoS One 7:e50107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Jockers R, Maurice P, Boutin JA et al (2008) Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new? Br J Pharmacol 154:1182–1195

    Article  CAS  PubMed  Google Scholar 

  69. Petit L, Lacroix I, deCoppet P et al (1999) Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3′-5′-monophosphate pathway. Biochem Pharmacol 58:633–639

    Article  CAS  PubMed  Google Scholar 

  70. Dubocovich ML, Delagrange P, Krause DN et al (2010) International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62:343–380

    Article  CAS  PubMed  Google Scholar 

  71. Ramracheya RD, Muller DS, Squires PE et al (2008) Function and expression of melatonin receptors on human pancreatic islets. J Pineal Res 44:273–279

    Article  CAS  PubMed  Google Scholar 

  72. Stumpf I, Muhlbauer E, Peschke E (2008) Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells. J Pineal Res 45:318–327

    Article  CAS  PubMed  Google Scholar 

  73. Peschke E, Stumpf I, Bazwinsky I et al (2007) Melatonin and type 2 diabetes – a possible link? J Pineal Res 42:350–358

    Article  CAS  PubMed  Google Scholar 

  74. Bonnefond A, Clement N, Fawcett K et al (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44:297–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Goh G, Choi M (2012) Application of whole exome sequencing to identify disease-causing variants in inherited human diseases. Genomics Inform 10:214–219

    Article  PubMed Central  PubMed  Google Scholar 

  76. Clark MJ, Chen R, Lam HY et al (2011) Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 29:908–914

    Article  CAS  PubMed  Google Scholar 

  77. McCrea KE, Herzog H (2000) Radioligand binding studies. Pharmacological profiles of cloned Y-receptor subtypes. Methods Mol Biol 153:231–239

    CAS  PubMed  Google Scholar 

  78. Kamal M, Marquez M, Vauthier V et al (2009) Improved donor/acceptor BRET couples for monitoring ß-arrestin recruitment to G protein-coupled receptors. Biotechnol J 4:1337–1344

    Article  CAS  PubMed  Google Scholar 

  79. Achour L, Kamal M, Jockers R et al (2011) Using quantitative BRET to assess G protein-coupled receptor homo- and heterodimerization. Methods Mol Biol 756:183–200

    Article  CAS  PubMed  Google Scholar 

  80. Bacart J, Corbel C, Jockers R et al (2008) The BRET technology and its application to screening assays. Biotechnol J 3:311–324

    Article  CAS  PubMed  Google Scholar 

  81. Zhang R, Xie X (2012) Tools for GPCR drug discovery. Acta Pharmacol Sin 33:372–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Los EL, Deen PM, Robben JH (2010) Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus. J Neuroendocrinol 22:393–399

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Agence Nationale de la Recherche (ANR 2011-BSV1-012-01 “MLT2D” and ANR-2011-META “MELA-BETES”), the Fondation Recherche Médicale (Equipe FRM DEQ20130326503, to R.J.), Institut National de la Santé et de la Recherche Médicale (INSERM), and Centre National de la Recherche Scientifique (CNRS). AK holds a postdoctoral fellowship from the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Karamitri, A., Jockers, R. (2014). Exon Sequencing of G Protein-Coupled Receptor Genes and Perspectives for Disease Treatment. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics