Skip to main content

Rescue of Defective G Protein-Coupled Receptor Function by Intermolecular Cooperation

  • Protocol
  • First Online:
G Protein-Coupled Receptor Genetics

Abstract

G protein-coupled receptors (GPCRs) transduce signals from a wide variety of extracellular stimuli such as ions, photons, odors, tastants, hormones, and neurotransmitters and hence are central players in communication between the cells of multicellular organisms and their environment. Characterization of these receptors at the molecular level has shown that GPCRs form dimers or oligomers (for simplicity, herein called dimers), yet their function is just beginning to emerge. The activation of GPCRs as dimers presents the opportunity for trans-activation of receptors, where a ligand-bound GPCR can change the activity of a neighboring GPCR. Trans-activation of GPCRs can take place either via transmembrane domains (TMDs) of two or more receptors or through a ligand-bound extracellular domain (ECD) of one receptor to the TMD of another (referred to as intermolecular cooperation), for GPCRs with a distinct ligand-binding ECD such as the glycoprotein hormone receptors. Before explaining the phenomenon of intermolecular cooperation between domains of GPCR dimers, this chapter first discusses the molecular interactions between GPCR dimers, which leads to trans-activation, and then explains various experimental strategies employed to study the significance of intermolecular cooperation either in rescuing the signaling of mutant GPCRs by complementary receptors or in changing the allosteric properties of GPCR dimers. The physiological significance of intermolecular cooperation is also discussed in detail, as well as its clinical significance that lies in the use of agents that selectively activate or inhibit particular signaling pathways or affect GPCR dimer interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  CAS  PubMed  Google Scholar 

  2. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  PubMed  Google Scholar 

  3. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  4. Venkatakrishnan AJ, Deupi X, Lebon G et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  CAS  PubMed  Google Scholar 

  5. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  CAS  PubMed  Google Scholar 

  6. Birdsall NJM (1982) Can different receptors interact directly with each other? Trends Neurosci 5:137–138

    Article  CAS  Google Scholar 

  7. Watanabe AM, McConnaughey MM, Strawbridge RA et al (1978) Muscarinic cholinergic receptor modulation of beta-adrenergic receptor affinity for catecholamines. J Biol Chem 253:4833–4836

    CAS  PubMed  Google Scholar 

  8. Jones KA, Borowsky B, Tamm JA et al (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396:674–679

    Article  CAS  PubMed  Google Scholar 

  9. Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Daniels DJ, Lenard NR, Etienne CL et al (2005) Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc Natl Acad Sci U S A 102:19208–19213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  12. Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  PubMed  Google Scholar 

  13. Haga K, Kruse AC, Asada H et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kobilka BK, Kobilka TS, Daniel K et al (1988) Chimeric alpha 2-, beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240:1310–1316

    Article  CAS  PubMed  Google Scholar 

  15. Maggio R, Vogel Z, Wess J (1993) Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc Natl Acad Sci U S A 90:3103–3107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ji I, Lee C, Song Y et al (2002) Cis- and trans-activation of hormone receptors: the LH receptor. Mol Endocrinol 16:1299–1308

    CAS  PubMed  Google Scholar 

  17. Vassart G, Pardo L, Costagliola S (2004) A molecular dissection of the glycoprotein hormone receptors. Trends Biochem Sci 29:119–126

    Article  CAS  PubMed  Google Scholar 

  18. Kleinau G, Krause G (2009) Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev 30:133–151

    Article  CAS  PubMed  Google Scholar 

  19. Ji I, Lee C, Jeoung M et al (2004) Trans-activation of mutant follicle-stimulating hormone receptors selectively generates only one of two hormone signals. Mol Endocrinol 18:968–978

    Article  CAS  PubMed  Google Scholar 

  20. Romano C, Yang WL, O’Malley KL (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 271:28612–28616

    Article  CAS  PubMed  Google Scholar 

  21. Bai M, Trivedi S, Brown EM (1998) Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem 273:23605–23610

    Article  CAS  PubMed  Google Scholar 

  22. White JH, Wise A, Main MJ et al (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396:679–682

    Article  CAS  PubMed  Google Scholar 

  23. Robbins MJ, Calver AR, Filippov AK et al (2001) GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. J Neurosci 21:8043–8052

    CAS  PubMed  Google Scholar 

  24. James JR, Oliveira MI, Carmo AM (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006

    Article  CAS  PubMed  Google Scholar 

  25. Bouvier M, Heveker N, Jockers R et al (2007) BRET analysis of GPCR oligomerization: newer does not mean better. Nat Methods 4:3–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Salahpour A, Masri B (2007) Experimental challenge to a ‘rigorous’ BRET analysis of GPCR oligomerization. Nat Methods 4:599–600

    Article  CAS  PubMed  Google Scholar 

  27. Calebiro D, Rieken F, Wagner J et al (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110:743–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kasai RS, Suzuki KG, Prossnitz ER (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480

    Article  CAS  PubMed  Google Scholar 

  29. Hern JA, Baig AH, Mashanov GI (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 107:2693–2698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Whorton MR, Bokoch MP, Rasmussen SG et al (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ernst OP, Gramse V, Kolbe M et al (2007) Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci U S A 104:10859–10864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lee C, Ji I, Ryu K et al (2002) Two defective heterozygous luteinizing hormone receptors can rescue hormone action. J Biol Chem 277:15795–15800

    Article  CAS  PubMed  Google Scholar 

  33. Lee C, Ji IJ, Ji TH (2002) Use of defined-function mutants to access receptor-receptor interactions. Methods 27:318–323

    Article  CAS  PubMed  Google Scholar 

  34. Laue L, Wu SM, Kudo M et al (1995) A nonsense mutation of the human luteinizing-hormone receptor gene in Leydig-cell hypoplasia. Hum Mol Genet 4:1429–1433

    Article  CAS  PubMed  Google Scholar 

  35. Osuga Y, Hayashi M, Kudo M et al (1997) Co-expression of defective luteinizing hormone receptor fragments partially reconstitutes ligand-induced signal generation. J Biol Chem 272:25006–25012

    Article  CAS  PubMed  Google Scholar 

  36. Guan R, Wu X, Feng X et al (2010) Structural determinants underlying constitutive dimerization of unoccupied human follitropin receptors. Cell Signal 22:247–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Harikumar KG, Lam PC, Dong M et al (2007) Fluorescence resonance energy transfer analysis of secretin docking to its receptor: mapping distances between residues distributed throughout the ligand pharmacophore and distinct receptor residues. J Biol Chem 282:32834–32843

    Article  CAS  PubMed  Google Scholar 

  38. Allen MD, Neumann S, Gershengorn MC (2011) Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB J 25:3687–3694

    Article  CAS  PubMed  Google Scholar 

  39. Karges B, Gidenne S, Aumas C et al (2005) Zero-length cross-linking reveals that tight interactions between the extracellular and transmembrane domains of the luteinizing hormone receptor persist during receptor activation. Mol Endocrinol 19:2086–2098

    Article  CAS  PubMed  Google Scholar 

  40. Urizar E, Montanelli L, Loy T, Bonomi M et al (2005) Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J 24:1954–1964

    Article  CAS  PubMed  Google Scholar 

  41. Zoenen M, Urizar E, Swillens S et al (2012) Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers. Nat Commun 3:1007

    Article  PubMed  Google Scholar 

  42. Novi F, Stanasila L, Giorgi F et al (2005) Paired activation of two components within muscarinic M3 receptor dimers is required for recruitment of beta-arrestin-1 to the plasma membrane. J Biol Chem 280:19768–19776

    Article  CAS  PubMed  Google Scholar 

  43. Rivero-Muller A, Chou YY, Ji I et al (2010) Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci U S A 107:2319–2324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zhang Y, Buchholz F, Muyrers JP et al (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  CAS  PubMed  Google Scholar 

  45. Ahtiainen P, Rulli S, Pakarainen T et al (2007) Phenotypic characterization of mice with exaggerated and missing LH/hCG action. Mol Cell Endocrinol 260–262:255–263

    Article  PubMed  Google Scholar 

  46. Zhang FP, Poutanen M, Wilbertz J et al (2001) Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol 15:172–183

    CAS  PubMed  Google Scholar 

  47. Abdelhamid EE, Sultana M, Portoghese PS (1991) Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 258:299–303

    CAS  PubMed  Google Scholar 

  48. Fundytus ME, Schiller PW, Shapiro M (1995) Attenuation of morphine tolerance and dependence with the highly selective delta-opioid receptor antagonist TIPP[psi]. Eur J Pharmacol 286:105–108

    Article  CAS  PubMed  Google Scholar 

  49. Miyamoto Y, Portoghese PS, Takemori AE (1993) Involvement of delta 2 opioid receptors in the development of morphine dependence in mice. J Pharmacol Exp Ther 264:1141–1145

    CAS  PubMed  Google Scholar 

  50. Gonzalez-Maeso J, Ang RL, Yuen T (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sealfon SC, Gonzalez-Maeso J (2008) Receptor pair for schizophrenia. Pediatr Res 64:1

    Article  PubMed Central  PubMed  Google Scholar 

  52. Schwenk J, Metz M, Zolles G (2010) Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 465:231–235

    Article  CAS  PubMed  Google Scholar 

  53. AbdAlla S, Lother H, el Massiery A et al (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 7:1003–1009

    Article  CAS  PubMed  Google Scholar 

  54. Lain KY, Roberts JM (2002) Contemporary concepts of the pathogenesis and management of preeclampsia. JAMA 287:3183–3186

    Article  PubMed  Google Scholar 

  55. Salahpour A, Angers S, Mercier JF (2004) Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem 279:33390–33397

    Article  CAS  PubMed  Google Scholar 

  56. Lopez-Gimenez JF, Canals M, Pediani JD (2007) The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 71:1015–1029

    Article  CAS  PubMed  Google Scholar 

  57. Canals M, Lopez-Gimenez JF, Milligan G (2009) Cell surface delivery and structural re-organization by pharmacological chaperones of an oligomerization-defective alpha(1b)-adrenoceptor mutant demonstrates membrane targeting of GPCR oligomers. Biochem J 417:161–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kobayashi H, Ogawa K, Yao R (2009) Functional rescue of beta-adrenoceptor dimerization and trafficking by pharmacological chaperones. Traffic 10:1019–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Ward NA, Hirst S, Williams J, Findlay JB (2012) Pharmacological chaperones increase the cell-surface expression of intracellularly retained mutants of the melanocortin 4 receptor with unique rescuing efficacy profiles. Biochem Soc Trans 40:717–720

    Article  CAS  PubMed  Google Scholar 

  60. Rene P, Le Gouill C, Pogozheva ID et al (2010) Pharmacological chaperones restore function to MC4R mutants responsible for severe early-onset obesity. J Pharmacol Exp Ther 335:520–532

    Article  CAS  PubMed  Google Scholar 

  61. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  62. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    Article  CAS  PubMed  Google Scholar 

  63. Huhtaniemi IT, Nevo N, Amsterdam A et al (1986) Effect of postnatal treatment with a gonadotropin-releasing hormone antagonist on sexual maturation of male rats. Biol Reprod 35:501–507

    Article  CAS  PubMed  Google Scholar 

  64. Catt KJ, Ketelslegers JM, Dufau ML (1976) In: Blecher M (ed) Methods in receptor research. Marcel Dekker, New York

    Google Scholar 

  65. Rivero-Muller A, Lajic S, Huhtaniemi I (2007) Assisted large fragment insertion by Red/ET-recombination (ALFIRE) – an alternative and enhanced method for large fragment recombineering. Nucleic Acids Res 35:e78

    Article  PubMed Central  PubMed  Google Scholar 

  66. Van Keuren ML, Gavrilina GB, Filipiak WE et al (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res 18:769–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Huang J, Chen S, Zhang JJ et al (2013) Crystal structure of oligomeric beta1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol 20:419–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare no conflict of interest. Their work has been supported by the Academy of Finland, a Programme Grant from the Wellcome Trust, and a grant by the Biotechnology and Biological Sciences Research Council (UK).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Trehan, A., Jonas, K.C., Huhtaniemi, I., Hanyaloglu, A.C., Rivero-Müller, A. (2014). Rescue of Defective G Protein-Coupled Receptor Function by Intermolecular Cooperation. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics