Skip to main content

Cryo-fixation by Self-Pressurized Rapid Freezing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

High-pressure freeze fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in vitreous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy of vitreous sections (CEMOVIS) to explore cellular ultrastructure as close as possible to the native state. Here, we describe the procedure of self-pressurized rapid freezing as fast, easy-to-use, and low-cost freeze fixation method, avoiding the usage of a high-pressure freezing (HPF) apparatus. Cells or small organisms are placed in capillary metal tubes, which are tightly closed and plunged directly into liquid ethane cooled by liquid nitrogen. In parts of the tube, crystalline ice is formed and builds up pressure sufficient for the liquid-glass transition of the remaining specimen. The quality of samples is equivalent to preparations by conventional HPF apparatus, allowing for high-resolution cryo-EM applications or for freeze substitution and plastic embedding.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Moor H (1987) Theory and practice of high pressure freezing. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 175–191

    Chapter  Google Scholar 

  2. Dobro MJ, Melanson LA, Jensen GJ et al (2010) Plunge freezing for electron cryomicroscopy. Meth Enzymol 481:63–82

    Article  CAS  PubMed  Google Scholar 

  3. Moor H, Riehle U (1968) Snap-freezing under high pressure: a new fixation technique for freeze-etching. In: Bocciarelli SD (ed) Proceedings of the fourth European regional conference on electron microscopy vol 2. pp 33–34

    Google Scholar 

  4. Leunissen JL, Yi H (2009) Self-pressurized rapid freezing (SPRF): a novel cryofixation method for specimen preparation in electron microscopy. J Microsc (Oxford) 235:25–35

    Article  CAS  Google Scholar 

  5. Yakovlev S, Downing KH (2011) Crystalline ice as a cryoprotectant: theoretical calculation of cooling speed in capillary tubes. J Microsc (Oxford) 243:8–14

    Article  CAS  Google Scholar 

  6. Warkentin M (2012) Comment on Yakovlev, S. & Downing, K.H. (2011) Crystalline ice as a cryoprotectant: theoretical calculation of cooling speed in capillary tubes. J. Microsc. 243, 8–14. J Microsc (Oxford) 246:322

    Article  CAS  Google Scholar 

  7. Yakovlev S, Downing KH (2011) Freezing in sealed capillaries for preparation of frozen hydrated sections. J Microsc (Oxford) 244: 235–247

    Article  CAS  Google Scholar 

  8. Han HM, Huebinger J, Grabenbauer M (2012) Self-pressurized rapid freezing (SPRF) as a simple fixation method for cryo-electron microscopy of vitreous sections. J Struct Biol 178:84–87

    Article  PubMed  Google Scholar 

  9. Buser C, Walther P (2008) Freeze-substitution: the addition of water to polar solvents enhances the retention of structure and acts at temperatures around -60°C. J Microsc (Oxford) 230: 268–277

    Article  CAS  Google Scholar 

  10. McDonald K (1999) High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. Methods Mol Biol 117:77–97

    CAS  PubMed  Google Scholar 

  11. McDonald K (2007) Cryopreparation methods for electron microscopy of selected model systems. Methods Cell Biol 79:23–56

    Article  CAS  PubMed  Google Scholar 

  12. McDowall AW, Chang JJ, Freeman R et al (1983) Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J Microsc (Oxford) 131:1–9

    Article  CAS  Google Scholar 

  13. Dubochet J, Adrian M, Chang JJ et al (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    Article  CAS  PubMed  Google Scholar 

  14. Al-Amoudi A, Norlen LP, Dubochet J (2004) Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J Struct Biol 148:131–135

    Article  CAS  PubMed  Google Scholar 

  15. Dubochet J, Zuber B, Eltsov M et al (2007) How to “read” a vitreous section. Methods Cell Biol 79:385–406

    Article  CAS  PubMed  Google Scholar 

  16. Bouchet-Marquis C, Zuber B, Glynn AM et al (2007) Visualization of cell microtubules in their native state. Biol Cell 99:45–53

    Article  CAS  PubMed  Google Scholar 

  17. Al-Amoudi A, Diez DC, Betts MJ et al (2007) The molecular architecture of cadherins in native epidermal desmosomes. Nature 450:832–837

    Article  CAS  PubMed  Google Scholar 

  18. Hsieh CE, Leith A, Mannella CA et al (2006) Towards high-resolution three-dimensional imaging of native mammalian tissue: electron tomography of frozen-hydrated rat liver sections. J Struct Biol 153:1–13

    Article  CAS  PubMed  Google Scholar 

  19. Zuber B, Nikonenko I, Klauser P et al (2005) The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. Proc Natl Acad Sci USA 102:19192–19197

    Article  CAS  PubMed  Google Scholar 

  20. Bouchet-Marquis C, Starkuviene V, Grabenbauer M (2008) Golgi apparatus studied in vitreous sections. J Microsc (Oxford) 230:308–316

    Article  CAS  Google Scholar 

  21. Hohn K, Sailer M, Wang L et al (2011) Preparation of cryofixed cells for improved 3D ultrastructure with scanning transmission electron tomography. Histochem Cell Biol 135: 1–9

    Article  PubMed  Google Scholar 

  22. Marko M, Hsieh C, Moberlychan W et al (2006) Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J Microsc (Oxford) 222:42–47

    Article  CAS  Google Scholar 

  23. McDonald K, Schwarz H, Muller-Reichert T et al (2010) “Tips and tricks” for high-pressure freezing of model systems. Methods Cell Biol 96:671–693

    Article  PubMed  Google Scholar 

  24. Buser C, McDonald K (2010) Correlative GFP-immunoelectron microscopy in yeast. Methods Enzymol 470:603–618

    Article  PubMed  Google Scholar 

  25. Grabenbauer M (2012) Correlative light and electron microscopy of GFP. Methods Cell Biol. 111:117–138

    Google Scholar 

Download references

Acknowledgments

The excellent technical support of Sabine Dongard and Dr. Oliver Hofnagel is gratefully acknowledged. This work was supported by Max-Planck/Fraunhofer interdisciplinary project “CryoSystems.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Grabenbauer, M., Han, HM., Huebinger, J. (2014). Cryo-fixation by Self-Pressurized Rapid Freezing. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics