Skip to main content

Processing Plant Tissues for Ultrastructural Study

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

This chapter briefly describes conventional and microwave-assisted chemical fixation methods, as well as cryo-specimen preparation techniques for studying the cellular and organelle ultrastructure of plant tissues under transmission electron microscopy. The general methods and procedures for the plant specimen preparation (including fixation, dehydration, resin infiltration, and embedding) are similar to those for animal tissues. However, certain special characteristic features of plant tissues such as thick cellulosic cell wall, waxy substance in the cuticle, large amount of gases in the intercellular spaces, and the presence of vacuoles have created fixation and resin filtration difficulties. Specific modifications of the protocols used for animal tissues are therefore required, such as the application of vacuum during the initial fixation and resin infiltration stage to remove gases from the tissues and resin. Microwave-assisted procedure can reduce specimen preparation time, but both conventional and microwave-assisted chemical fixation procedures produce artifacts. Cryo-specimen preparation involves with high-pressure freezing and freeze-substitution can minimize artifact formation, but their application to highly vacuolated, thick-walled plant cells is limited.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bozzola JJ, Russell LD (1999) Electron microscopy principles and techniques for biologists. Jones and Bartlett Publishers, Sudbury, MA

    Google Scholar 

  2. Hayat MA (2000) Principles and techniques of electron microscopy- biological application, 4th edn. Cambridge University Press, Cambridge, pp 349–471, for Plant tissues

    Google Scholar 

  3. Dashek WV (ed) (2000) Methods in plant electron microscopy and cytochemistry. Humana Press, Totowa, NJ

    Google Scholar 

  4. Dykstra MJ, Ruess LE (2003) Biological electron microscopy: theory, techniques, and troubleshooting. Kluwer, New York

    Book  Google Scholar 

  5. O’Brien TP, Kuo J, McCully ME et al (1973) Coagulant and non-coagulant fixation of plant cells. Aust J Biol Sci 26:1231–1250

    Google Scholar 

  6. Mersey B, McCully ME (1978) Monitoring of the course of fixation of plant cells. J Microsc (Oxford) 114:49–76

    Article  Google Scholar 

  7. Samuels AL, Staehelin LA (1996) Caffeine inhibits cell plate formation by disrupting membrane reorganization just after the vesicle fusion step. Protoplasma 195:144–155

    Article  CAS  Google Scholar 

  8. Dong Z, McCully ME, Canny MJ (1994) Retention of vacuoles contents of plant cells during fixation. J Microsc (Oxford) 175:222–228

    Article  CAS  Google Scholar 

  9. Mayers CP (1970) Histological fixation by microwave heating. J Clin Pathol 23:273–275

    Article  CAS  PubMed  Google Scholar 

  10. Giberson RT, Demaree RS Jr (1999) Microwave processing techniques for electron microscopy: a four-hour protocol. Methods Mol Biol 117:145–158

    CAS  PubMed  Google Scholar 

  11. Benhamou N, Noel S, Grenier J et al (1991) Microwave energy fixation of plant tissue: an alternative approach that provides excellent preservation of ultrastructure and antigenicity. J Electron Microsc Tech 17:81–94

    Article  CAS  PubMed  Google Scholar 

  12. Heumann HG (1992) Microwave-stimulated glutaraldehyde and osmium tetroxide fixation of plant tissue: ultrastructural preservation in seconds. Histochemistry 97:341–347

    Article  CAS  PubMed  Google Scholar 

  13. Russin WA, Trivett CL (2001) Vacuum-microwave combination for processing plant tissues for electron microscopy. In: Giberson RT, Demaree RS Jr (eds) Microwave techniques and protocols. Humana Press, Totowa, NJ, pp 25–35

    Chapter  Google Scholar 

  14. Lería F, Marco R, Medina FJ (2004) Structural and antigenic preservation of plant samples by microwave-enhanced fixation, using dedicated hardware, minimizing heat-related effects. Microsc Res Tech 65:86–100

    Article  PubMed  Google Scholar 

  15. Zechmann B, Zellnig G (2009) Microwave-assisted rapid plant sample preparation for transmission electron microscopy. J Microsc (Oxford) 233:258–268. doi:10.1111/j.1365-2818.2009.03116.x

    Article  CAS  Google Scholar 

  16. Carpetier A, Abreu S, Trichet M et al (2012) Microwaves and tea: new tools to process plant tissue for transmission electron microscopy. J Microsc (Oxford) 247:94–105. doi:10.1111/j.1365-2818.2012.03626.x

    Article  Google Scholar 

  17. Moor H, Riehle U (1968) Snap-freezing under high pressure: a new fixation technique for freeze-etching. In: Bocciarelli D.S. (ed) Proceedings on 4th Euro Reg Conf Elect Microsc 2, 33–34. Rome

    Google Scholar 

  18. Muelller M, Moor H (1984) Cryofixation of thick specimens by high-pressure freezing. In: Revel J-P, Bamard T, Haggis GH (eds) The science of biological specimen preparation for microscopy and microanalysis. SEM, Inc., AMF O’Hare, Chicago, IL, pp 131–138

    Google Scholar 

  19. Humbel B, Mueller M (1986) Freeze substitution and low temperature embedding. In: Mueller M et al (eds) The science of biological specimen preparation for microscopy and Microanalysis 1985. SEM, Inc., AMF O’Hare, Chicago, IL, pp 175–183

    Google Scholar 

  20. Studer D, Michel M, Meuller M (1989) High pressure freezing comes of age. Scanning Microsc Suppl 3:253–268, discussion 268-269

    CAS  PubMed  Google Scholar 

  21. Dahl R, Staehelin LA (1989) High pressure freezing for the preservation of biological structure: theory and practice. J Elect Microsc Techn 13:165–174

    Article  CAS  Google Scholar 

  22. Staehelin LA (1991) High pressure freezing, an advanced cryofixation technique for electron microscopical research. Plant Sci Tomorrow 3:16–17

    Google Scholar 

  23. McDonald K, Schwarz H, Muller-Reichert T et al (2010) “Tips and tricks” for high-pressure freezing of model systems. Methods Cell Biol 96:671–693

    Article  PubMed  Google Scholar 

  24. Hess MW (2003) Of plants and other pets: practical aspects of freeze-substitution and resin embedding. J Microsc (Oxford) 212:44–52

    Article  CAS  Google Scholar 

  25. Hess MW (2007) Cryopreparation methodology for plant cell biology. Methods Cell Biol 79:57–100. doi:10.1016/s0091-679x(06) 79003-3

    Article  CAS  PubMed  Google Scholar 

  26. Kang BH (2010) Electron microscopy and high-pressure freezing of Arabidopsis. Methods Cell Biol 96:259–283

    Article  PubMed  Google Scholar 

  27. Craig S, Staehelin LA (1988) High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems. Eur J Cell Biol 146:80–93

    Google Scholar 

  28. Kiss JZ, Giddings TH Jr, Staehelin LA et al (1990) Comparison of the ultrastructure of conventionally fixed and high pressure frozen/freeze substituted root tips of Nicotiana and Arabidopsis. Protoplasma 157:64–74

    Article  CAS  PubMed  Google Scholar 

  29. Staehelin LA, Giddings TH Jr, Kiss JZ et al (1990) Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples. Proc Natl Acad Sci U S A 157:75–97

    CAS  Google Scholar 

  30. Mineyuki Y, Murata T, Giddings TH et al (1998) Observation of meristematic cells in seedlings of higher plants using a high pressure freezing method. Plant Morph 10:30–39

    Article  Google Scholar 

  31. Segui-Simarro JM, Austin JR, White EA et al (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high pressure freezing. Plant Cell 16:836–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Studer D, Hennecke H, Müller M (1992) High-pressure freezing of soybean nodules leads to an improved preservation of ultrastructure. Planta 188:155–163

    Article  CAS  PubMed  Google Scholar 

  33. Tiedemann J, Hohenberg H, Kollmann R (1998) High-pressure freezing of plant cells cultured in cellulose microcapillaries. J Microsc (Oxford) 189:163–171

    Article  Google Scholar 

  34. Thijssen MH, Mittempergher F, VanAelst AC et al (1997) Improved ultrastructural preservation of Petunia and Brassica ovules and embryo sacs by high pressure freezing and freeze substitution. Protoplasma 197:199–209

    Article  Google Scholar 

  35. Kaneko Y, Walther P (1995) Comparison of ultrastructure of germinating pea leaves prepared by high-pressure freezing-freeze substitution and conventional chemical fixation. J Electron Microsc 44:104–109

    CAS  Google Scholar 

  36. Bourett TM, Czymmek KJ, Howard RJ (1999) Ultrastructure of chloroplast protuberances in rice leaves preserved by high-pressure freezing. Planta 208:472–479

    Article  CAS  Google Scholar 

  37. Pfeiffer S, Krupinska K (2005) Chloroplast ultrastructure in leaves of Urtica dioica L. analyzed after high-pressure freezing and freeze-substitution and compared with conventional fixation followed by room temperature dehydration. Microsc Res Tech 68:368–376

    Article  PubMed  Google Scholar 

  38. Austin JR II, Staehelin LA (2011) The three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol 155:1601–1611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hillmer S, Viotti C, Robinson DG (2012) An improved procedure for low-temperature embedding of high-pressure frozen and freeze-substituted plant tissues resulting in excellent structural preservation and contrast. J Microsc (Oxford) 247:43–47. doi:10.1111/j.1365-2818.2011.03595.x

    Article  CAS  Google Scholar 

  40. Ding B, Turgeon R, Parthasarathy MV (1992) Effect of high-pressure freezing on plant microfilament bundles. J Microsc (Oxford) 165:367–376

    Article  Google Scholar 

  41. Lancelle SA, Callaham DA, Hepler PK (1986) A method for rapid freeze fixation of plant cells. Protoplasma 131:153–165

    Article  Google Scholar 

  42. Lancelle SA, Hepler PK (1989) Immunogold labelling of actin on sections of freeze-substituted plant cells. Protoplasma 150:72–74

    Article  Google Scholar 

  43. Ding B, Turgeon R, Parthasarathy MV (1991) Routine cryofixation of plant tissue by propane jet freezing for freeze substitution. J Electron Microsc Tech 19:107–117

    Article  CAS  PubMed  Google Scholar 

  44. Nitta K, Kaneko Y (2004) Simple plunge freezing applied to plant tissues for capturing ultrastructure close to the living state. J Electron Microsc 53:677–680

    Article  Google Scholar 

  45. Dubochet J, Mcdowall AW (1981) Vitrification of pure water for electron-microscopy. J Microsc (Oxford) 124:Rp3–Rp4

    Article  Google Scholar 

  46. Al-Amoudi A, Norlen LPO, Dubochet J (2004) Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J Struct Biol 148:131–135

    Article  CAS  PubMed  Google Scholar 

  47. Michel M, Hillmann T, Mueller M (1991) Cryosectioning of plant material frozen at high pressure. J Microsc (Oxford) 163:3–18

    Article  Google Scholar 

  48. Edwards HH, Yeh YY, Tarnowsky BI et al (1992) Acetonitrile as a substitute for ethanol/propylene oxide in tissue processing for transmission electron microscopy: Comparison of fine structure and lipid solubility in mouse liver, kidney, and intestine. Microsc Res Tech 21: 39–50

    Article  CAS  PubMed  Google Scholar 

  49. Mascorro JA (2004) Propylene oxide: to use or not to use in biological tissue processing. Microsc Today 12:45–46

    Google Scholar 

  50. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  51. Ellis EA (2006) Solutions to the problem of ERL 4221 for vinyl cyclohexene dioxide in Spurr low viscosity embedding formulations. Microsc Today 14:32–33

    CAS  Google Scholar 

  52. Hohenberg H, Mannweiler K, Muller M (1994) High-pressure freezing of cell-suspensions in cellulose capillary tubes. J Microsc (Oxford) 175:34–43

    Article  CAS  Google Scholar 

  53. England WE, McCully ME, Huang CX (1997) Solvent vapour lock: an extreme case of the problems caused by lignified and suberized cell walls during resin filtration. J Miscrosc (Oxford) 185:85–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kuo, J. (2014). Processing Plant Tissues for Ultrastructural Study. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics