Abstract
In correlative microscopy, light microscopy provides the overview and orientation of the complex cells and tissue, while electron microscopy offers the detailed localization and correlation of subcellular structures. In this chapter we offer detailed high-quality electron microscopical preparation methods for optimum preservation of the cellular ultrastructure. From such preparations serial thin sections are collected and used for comparative histochemical, immunofluorescence, and immunogold staining.
In light microscopy histological stains identify the orientation of the sample and immunofluorescence labeling facilitates to find the region of interest, namely, the labeled cells expressing the macromolecule under investigation. Sections, labeled with immunogold are analyzed by electron microscopy in order to identify the label within the cellular architecture at high resolution.
Key words
- Immunolabeling
- Immunofluorescence
- Immunogold
- Light microscopy
- Transmission electron microscopy
- Scanning electron microscopy
- Resin embedding
- Methacrylate
- Epoxy
- Tokuyasu cryosectioning
- Correlative microscopy
- Array tomography
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Griffiths G (2001) Bringing electron microscopy back into focus for cell biology. Trends Cell Biol 11:153–154
Brink HA, Barfels MMG, Burgner RP et al (2003) A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S)TEMs. Ultramicroscopy 96:367–384
Barfels MMG, Jiang X, Heng YM et al (1998) Low energy loss electron microscopy of chromophore. Micron 29:97–104
Sartori A, Gatz R, Beck F et al (2005) Correlation microscopy: bridging the gap between light- and cryo-electron microscopy. Microsc Microanal 11:16–17
Sartori A, Gatz R, Beck F et al (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160:135–145
Gruska M, Medalia O, Baumeister W et al (2008) Electron tomography of vitreous sections from cultured mammalian cells. J Struct Biol 161:384–392
Agronskaia AV, Valentijn JA, van Driel LF et al (2008) Integrated fluorescence and transmission electron microscopy. J Struct Biol 164:183–189
Karreman MA, Agronskaia AV, Verkleij AJ et al (2009) Discovery of a new RNA containing nuclear structure in UVC-induced apoptotic cells by integrated laser electron microscopy. Biol Cell 101:287–299
Iijima H, Fukuda Y, Arai Y et al. (2013) Hybrid fluorescence and electron cryo-microscopy and cathodoluminescence of a fluorescent protein. J Struct Biol (doi: http://dx.doi.org/10.1016/j.jsb.2013.10.018)
Iijima H, Minoda H, Arai Y et al. (2010) Gordon research conference on 3D EM., Il Ciocco, Italy
Stierhof Y-D, El Kasmi F (2010) Strategies to improve the antigenicity, ultrastructure preservation and visibility of trafficking compartments in Arabidopsis tissue. Eur J Cell Biol 89:285–297
Kukulski W, Schorb M, Welsch S et al (2012) Precise, correlated fluorescence microscopy and electron tomography of lowicryl sections using fluorescent fiducial markers. Methods Cell Biol 111:235–257
Kukulski W, Schorb M, Welsch S et al (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192:111–119
Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84
Watanabe S, Jorgensen EM (2012) Visualizing proteins in electron micrographs at nanometer resolution. Methods Cell Biol 111:283–306
Abolhassani-Dadras S, Vázquez-Nin GH, Echeverria OM et al (1996) Image-EELS for in situ estimation of the phosphorous content of RNP granules. J Microsc (Oxford) 183:215–222
Grabenbauer M, Geerts WJC, Fernadez-Rodriguez J et al (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862
Gaietta G, Deerink TJ, Adams SR et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507
Meißlitzer-Ruppitsch C, Röhrl C, Neumüller J et al (2009) Photooxidation technology for correlated light and electron microscopy. J Microsc (Oxford) 235:322–335
Shu X, Lev-Ram V, Deerinck TJ et al (2011) A genetically encoded tag for correlated light and electron microscopy of Intact cells, tissues, and organisms. PLoS Biol 9:e1001041
Geuze HJ (1999) A future for electron microscopy in cell biology? Trends Cell Biol 9:92–93
Melan MA, Sluder G (1992) Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy. J Cell Sci 101:731–743
Humbel BM, de Jong MDM, Müller WH et al (1998) Pre-embedding immunolabeling for electron microscopy: an evaluation of permeabilization methods and markers. Microsc Res Tech 42:43–48
Brink M, Humbel BM, de Kloet ER et al (1992) Evidence against the model of nuclear translocation for the glucocorticoid receptor. Endocrinology 130:3575–3581
Stierhof Y-D, Schwarz H, Frank H (1986) Transverse sectioning of plastic-embedded immunolabeled cryosections: morphology and permeability to protein A-colloidal gold complexes. J Ultrastruct Mol Struct Res 97:187–196
Stierhof Y-D, Schwarz H (1989) Labeling properties of sucrose-infiltrated cryosections. Scanning Microsc Suppl 3:35–46
Schwarz H (1994) Immunolabelling of ultrathin resin sections for fluorescence and electron microscopy. In: Jouffrey B, Coliex C (eds) Electron microscopy 1994, ICEM 13. Les Editions de Physique, Les Ulis, France, pp 255–256
Schwarz H, Hohenberg H, Humbel BM (1993) Freeze-substitution in virus research: a preview. In: Hyatt AD, Eaton BT (eds) Immunoelectron microscopy in virus diagnosis and research. CRC, Boca Raton, pp 97–118
Schwarz H (1998) Correlative immunolabelling of ultrathin resin sections for light and electron microscopy. In: Calderón Benavides HA, Yacamán MJ, Jiménez LF et al (eds) Electron microscopy 1998, ICEM 14. Institute of Physics Publishing, Bristol, pp 865–866
Schwarz H, Humbel BM (2008) Correlative light and electron microscopy. In: Cavalier A, Spehner D, Humbel BM (eds) Handbook of cryo-preparation methods for electron microscopy. CRC, Boca Raton, pp 527–555
Fabig G, Kretschmar S, Weiche S et al (2012) Labeling of ultrathin resin sections for correlative light and electron microscopy. Methods Cell Biol 111:75–93
Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565
Tokuyasu KT (1986) Application of cryoultramicrotomy to immunocytochemistry. J Microsc (Oxford) 143:139–149
Posthuma G, van Donselaar E, Griffith J et al (2001) Ultrathin cryo-sectioning and immuno-gold labeling. A practical introduction. Department of Cell Biology, Institute of Biomembranes, University Medical Center Utrecht, The Netherlands
Slot JW, Geuze HJ (2007) Cryosectioning and immunolabeling. Nat Protoc 2:2480–2491
Takizawa T, Robinson JM (2006) Correlative microscopy of ultrathin cryosections in placental research. Methods Mol Med 121: 351–369
Takizawa T, Robinson JM (2003) Correlative microscopy of ultrathin cryosections is a powerful tool for placental research. Placenta 24:557–565
Stierhof Y-D, van Donselaar E, Schwarz H, Humbel BM (2008) Cryo-fixation, freeze-substitution, rehydration and Tokuyasu-cryo sectioning. In: Cavalier A, Spehner D, Humbel BM (eds) Handbook for cryo-preparation methods for electron microscopy. CRC, Boca Raton, USA, pp 343–365
Van Donselaar E, Posthuma G, Zeuschner D et al (2007) Immunogold labeling of cryo-sections from high-pressure frozen cells. Traffic 8:471–485
Ripper D, Schwarz H, Stierhof Y-D (2008) Cryo-section immunolabelling of difficult to preserve specimens: advantages of cryofixation, freeze-substitution and rehydration. Biol Cell 100:109–123
Oorschot V, Heidi de Wit H, Annaert WB et al (2002) A novel flat-embedding method to prepare ultrathin cryosections from cultured cells in their in situ orientation. J Histochem Cytochem 50:1067–1080
Acetarin JD, Carlemalm E, Villiger W (1986) Developments of new Lowicryl resins for embedding biological specimens at even lower temperatures. J Microsc (Oxford) 143:81–88
Carlemalm E, Garavito RM, Villiger W (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc (Oxford) 126:123–143
Newman GR, Hobot JA (1987) Modern acrylics for post-embedding immunostaining techniques. J Histochem Cytochem 35:971–981
Newman GR, Hobot JA (1993) Resin microscopy and on-section immunocytochemistry. Springer, Berlin
Scala C, Cenacchi G, Ferrari C et al (1992) A new acrylic resin formulation: a useful tool for histological, ultrastructural, and immunocytochemical investigations. J Histochem Cytochem 40:1799–1804
Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414
Glauert AM, Glauert RH (1958) Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol 4:191–194
Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43
Trump BF, Smuckler EA, Benditt EP (1961) A method for staining epoxy sections for light microscopy. J Ultrastruct Res 5:343–348
Saito N, Konishia K, Takeda H et al (2003) Antigen retrieval trial for post-embedding immunoelectron microscopy by heating with several unmasking solutions. J Histochem Cytochem 51:989–994
Yamashita S, Katsumata O, Okada Y (2009) Establishment of a standardized post-embedding method for immunoelectron microscopy by applying heat-induced antigen retrieval. J Electron Microsc 58:267–279
Micheva KD, Busse B, Weiler NC et al (2010) Array tomography: immunostaining and antibody elution. Neuron 68:639–653
Causton BE (1986) Does the embedding chemistry interact with tissue? In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM Inc., AMF O'Hare, pp 209–214
Causton BE (1984) The choice of resins for electron immunocytochemistry. In: Polak JM, Varndell IM (eds) Immunolabelling for electron microscopy. Elsevier Science Publishers, Amsterdam, pp 29–36
Van Harreveld A, Crowell J, Malhotra SK (1965) A study of extracellular space in central nervous tissue by freeze-substitution. J Cell Biol 25:117–137
Steinbrecht RA, Müller M (1987) Freeze-substitution and freeze-drying. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 149–172
Humbel BM, Schwarz H (1989) Freeze-substitution for immunochemistry. In: Verkleij AJ, Leunissen JLM (eds) Immuno-gold labeling in cell biology. CRC, Boca Raton, pp 115–134
Humbel B, Marti T, Müller M (1983) Improved structural preservation by combining freeze substitution and low temperature embedding. Beitr Elektronenmikrosk Direktabb Oberfl 16:585–594
Riehle U (1968) Über die Vitrifizierung verdünnter wässriger Lösungen. Federal Institute of Technology, Zürich
Riehle U, Hoechli M (1973) The theory and technique of high pressure freezing. In: Benedetti EL, Favard P (eds) Freeze-etching techniques and applications. Société Française de Microscopie Electronique, Paris, pp 31–61
Müller M, Moor H (1984) Cryofixation of thick specimens by high pressure freezing. In: Revel JP, Barnard T, Haggis GH (eds) Science of biological specimen preparation 1983. SEM Inc., AMF O'Hare, pp 131–138
Studer D, Michel M, Müller M (1989) High pressure freezing comes of age. Scanning Microsc Suppl 3:253–268
Müller M (1992) The integrating power of cryofixation-based electron microscopy in biology. Acta Microsc 1:37–44
Betzig EH, Patterson G, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645
Hermann R, Schwarz H, Müller M (1991) High precision immunoscanning electron microscopy using Fab fragments coupled to ultra-small colloidal gold. J Struct Biol 107:38–47
Humbel BM, Biegelmann E (1992) A preparation protocol for postembedding immunoelectron microscopy of Dictyostelium discoideum cells with monoclonal antibodies. Scanning Microsc 6:817–825
Albrecht U, Seulberger H, Schwarz H et al (1990) Correlation of blood–brain barrier function and HT7 protein distribution in chick brain circumventricular organs. Brain Res 535:49–61
Bierkamp C, Schwarz H, Huber O et al (1999) Desmosomal localization of b-catenin in the skin of plakoglobin null-mutant mice. Development 126:371–381
Fialka I, Schwarz H, Reichmann E et al (1996) The estrogen-dependent c-junER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J Cell Biol 132:1115–1132
Hoffmann W, Schwarz H (1996) Ependymins: meningeal-derived extracellular matrix proteins at the blood–brain barrier. Int Rev Cytol 165:121–158
Kurth T, Schwarz H, Schneider S et al (1996) Fine structural immunocytochemistry of catenins in amphibian and mammalian muscle. Cell Tissue Res 286:1–12
Wilsch-Bräuninger M, Schwarz H, Nüsslein-Volhard C (1997) A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J Cell Biol 139:817–829
Nica G, Herzog W, Sonntag C et al (2006) Eya1 is required for lineage-specific differentiation, but not for cell survival in the zebrafish adenohypophysis. Dev Biol 292:189–204
Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36
Oberti D, Kirschmann MA, Hahnloser RHR (2011) Projection neuron circuits resolved using correlative array tomography. Front Neurosci 5:1–8
Oberti D, Kirschmann MA, Hahnloser RHR (2010) Correlative microscopy of densely labeled projection neurons using neural tracers. Front Neurosci 4:1–9
Pluk H, Stokes DJ, Lich B et al (2009) Advantages of indium–tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells. J Microsc (Oxford) 233:353–363
Stöffler H-E, Honnert U, Bauer CA et al (1998) Targeting of the myosin-I myr 3 to intercellular adherens type junctions induced by dominant active Cdc42 in HeLa cells. J Cell Sci 111:2779–2788
Loussert C, Forestier C-L, Humbel BM (2012) Correlative light and electron microscopy in parasite research. Methods Cell Biol 111:59–73
Kolotuev I, Bumbarger DJ, Labouesse M et al (2012) Targeted ultramicrotomy: a valuable tool for correlated light and electron microscopy of small model organisms. Methods Cell Biol 111:203–222
Kolotuev I, Schwab Y, Labouesse M (2010) A precise and rapid mapping protocol for correlative light and electron microscopy of small invertebrate organisms. Biol Cell 102:121–132
Tobler M, Freiburghaus AU (1990) Occupational risks of (meth)acrylate compounds in embedding media for electron microscopy. J Microsc 160:291–298
Beug H, von Kirchbach A, Döderlein G et al (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18:375–390
Longin A, Souchier C, French M et al (1993) Comparison of anti-fading agenst used in fluorescence microscopy: Image analysis and laser confocal microscopy study. J Histochem Cytochem 41:1833–1840
Langanger G, De Mey J, Adam H (1983) 1,4-Diazobizyklo-(2.2.2)-Oktan (DABCO) verzögert das Ausbleichen von Immunfluoreszenzpräparaten. Mikroskopie 40:237–241
Johnson GD, Araujo GM (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43:349–350
Giloh H, Sedat JW (1982) Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 217:1252–1255
Van Bergen en Henegouwen PMP, Leunissen JLM (1986) Controlled growth of colloidal gold particles and implications for labelling efficiency. Histochemistry 85:81–87
Birrell GB, Hedberg KK, Griffith OH (1987) Pitfalls of immunogold labeling: analysis by light microscopy, transmission electron microscopy, and photoelectron microscopy. J Histochem Cytochem 35:843–853
Griffiths G (1993) Fine structure immunocytochemistry. Springer, Berlin
Ebersold HR, Cordier J-L, Lüthy P (1981) Bacterial mesosomes: method dependent artifacts. Arch Microbiol 130:19–22
Kaneko Y, Walther P (1995) Comparison of ultrastructure of germinating pea leaves prepared by high-pressure freezing-freeze substitution and conventional chemical fixation. J Electron Microsc 44:104–109
Studer D, Michel M, Wohlwend M et al (1995) Vitrification of articular cartilage by high-pressure freezing. J Microsc (Oxford) 179:321–332
Studer D, Hennecke H, Müller M (1992) High-pressure freezing of soybean nodules leads to an improved preservation of ultrastructure. Planta 188:155–163
Fernández-Morán H (1960) Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid Helium II. Ann N Y Acad Sci 85:689–713
Costello MJ, Fetter R, Corless JM (1983) Optimum conditions for the plunge freezing of sandwiched samples. In: Revel JP, Barnard T, Haggis GH (eds) Science of biological specimen preparation, 1983. SEM Inc., AMF O'Hare (Chicago), IL, pp 105–115
Müller M, Meister N, Moor H (1980) Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie 36:129–140
Van Harreveld A, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–386
Bachmann L, Schmitt WW (1971) Improved cryofixation applicable to freeze etching. Proc Natl Acad Sci U S A 68:2149–2152
Moor H (1987) Theory and practice of high pressure freezing. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 175–191
Echlin P (1992) Low-temperature microscopy and analysis. Plenum Press, New York
Zierold K, Steinbrecht RA (eds) (1987) Cryotechniques in biological electron microscopy. Springer, Berlin
Cavalier A, Spehner D, Humbel BM (eds) (2008) Handbook for cryo-preparation methods for electron microscopy. CRC Press Inc, Boca Raton, USA
Robards AW, Sleytr UB (eds) (1985) Low temperature methods in biological electron microscopy. Elsevier, Amsterdam
Tokuyasu KT (1976) Membranes as observed in frozen sections. J Ultrastruct Res 55:281–287
Tokuyasu KT (1989) Use of poly (vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J 21: 163–171
Liou W, Geuze HJ, Slot JW (1996) Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol 106:41–58
Griffiths G, Simons K, Warren G et al (1983) Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki forest virus spike glycoproteins. Methods Enzymol 96:466–485
Tokuyasu KT (1986) Cryosections for immunohistochemistry. J Electron Microsc 35:1977–1978
Hayat MA (2000) Principles and techniques of electron microscopy biological applications. Cambridge University Press, Cambridge
Villiger W (1991) Lowicryl resins. In: Hayat MA (ed) Colloidal gold: principles, methods, and applications. Academic, San Diego, pp 59–71
Weibull C, Villiger W, Carlemalm E (1984) Extraction of lipids during freeze-substitution of Acholeplasma laidlawii-cells for electron microscopy. J Microsc (Oxford) 134: 213–216
Hunziker EB, Herrmann W (1987) In situ localization of cartilage extracellular matrix components by immunoelectron microscopy after cryotechnical tissue processing. J Histochem Cytochem 35:647–655
Verkleij AJ, Humbel BM, Studer D et al (1985) “Lipidic particle” systems as visualized by thin-section electron microscopy. Biochim Biophys Acta 812:591–595
Schwarz H, Humbel BM (1989) Influence of fixatives and embedding media on immunolabelling of freeze-substituted cells. Scanning Microsc Suppl 3:57–64
Meissner DH, Schwarz H (1990) Improved cryofixation and freeze-substitution of embryonic quail retina: a TEM study on ultrastructural preservation. J Electron Microsc Tech 14:348–356
Müller M, Marti T, Kriz S (1980) Improved structural preservation by freeze substitution. In: Brederoo P., de Priester W (eds) Proc 7th Eur Congr Electron Microsc, The Hague, p 720–721
Grünfelder CG, Engstler M, Weise F et al (2002) Accumulation of a GPI-anchored protein at the cell surface requires sorting at multiple intracellular levels. Traffic 3:547–559
Humbel B, Müller M (1986) Freeze substitution and low temperature embedding. In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM Inc., AMF O'Hare, pp 175–183
Monaghan P, Robertson D (1990) Freeze-substitution without aldehyde or osmium fixatives: ultrastructure and implications for immunocytochemistry. J Microsc (Oxford) 158:355–363
Tonning A, Helms S, Schwarz H et al (2005) Hormonal regulation of mummy is needed for apical extracellular matrix formation and epithelial morphogenesis in Drosophila. Development 133:331–341
Romeis B (1989) Mikroskopische Technik. Urban & Schwarzenberg, München
Huang WM, Gibson SJ, Facer P et al (1983) Improved section adhesion for immunocytochemistry using high molecular weight polymers of l-lysine as a slide coating. Histochemistry 77:275–279
Abad A (1988) A study of section wrinkling on single-hole coated grids using TEM and SEM. J Electron Microsc Tech 8:217–222
Rodriguez J, Deinhardt F (1960) Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology 12:316–317
Lennette DA (1978) An improved mounting medium for immunofluorescence microscopy. Am J Clin Pathol 69:647–648
Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408
Kärgel E, Menzel R, Honeck H et al (1996) Candida maltosa NADPH-cytochrome P450 reductase: cloning of a full-length cDNA, heterologous expression in Saccharomyces cerevisiae and function of the N-terminal region for membrane anchoring and proliferation of the endoplasmic reticulum. Yeast 12:333–348
Behrman EJ (1984) The chemistry of osmium tetroxide fixation. In: Revel JP, Barnard T, Haggis GH (eds) The science of biological specimen preparation 1983. SEM Inc., AMF O'Hare, IL, pp 1–5
Maupin P, Pollard TD (1983) Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol 96:51–62
Tanaka K, Mitsushima A (1984) A preparation method for observing intracellular structures by scanning electron microscopy. J Microsc (Oxford) 133:213–222
Humbel BM, Konomi M, Takagi T et al (2001) In situ localization of b-glucans in the cell wall of Schizosaccharomyces pombe. Yeast 18:433–444
White DL, Andrews SB, Faller JW et al (1976) The chemical nature of osmium tetroxide fixation and staining of membranes by x-ray photoelectron spectroscopy. Biochim Biophys Acta 436:577–592
Matsko N, Müller M (2005) Epoxy resin as fixative during freeze-substitution. J Struct Biol 152:92–103
Micheva KD, O’Rourke N, Busse B et al (2010) Array tomography: immunostaining and antibody elution. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5525
Avrameas S, Ternynck T (1969) The cross-linking of proteins with glutaraldehyde and its use for the preparation of immunoadsorbents. Immunochemistry 6:53–66
Danscher G (1981) Localization of gold in biological tissue. A photochemical method for light and electron microscopy. Histochemistry 71:81–88
Acknowledgments
The zebra fish specimen and the anti-prolactin serum were provided by Dr. Matthias Hammerschmidt (University of Cologne). Dr. Roger Wepf (EMEZ, ETH Zürich) recommended to use ITO-coated coverslips for SEM and provided such coverslips for pilot experiments. We thank Mrs. Brigitte Sailer for technical support, Mrs. Gertrud Scheer for excellent photographic work, and Dr. Céline Loussert and Dr. York-Dieter Stierhof for their valuable comments on the manuscript. We also would like to thank the financial support by the Faculty of Biology and Medicine of the University of Lausanne and by the R'Equip grant 316030_128692 of the Swiss National Science Foundation.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media, New York
About this protocol
Cite this protocol
Schwarz, H., Humbel, B.M. (2014). Correlative Light and Electron Microscopy Using Immunolabeled Sections. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_25
Download citation
DOI: https://doi.org/10.1007/978-1-62703-776-1_25
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-62703-775-4
Online ISBN: 978-1-62703-776-1
eBook Packages: Springer Protocols