Abstract
Modern standardized methodologies, described in detail in the previous chapters of this book, have enabled the software-automated design of optimized DNA construction protocols. This chapter describes how to design (combinatorial) scar-less DNA assembly protocols using the web-based software j5. j5 assists biomedical and biotechnological researchers construct DNA by automating the design of optimized protocols for flanking homology sequence as well as type IIS endonuclease-mediated DNA assembly methodologies. Unlike any other software tool available today, j5 designs scar-less combinatorial DNA assembly protocols, performs a cost–benefit analysis to identify which portions of an assembly process would be less expensive to outsource to a DNA synthesis service provider, and designs hierarchical DNA assembly strategies to mitigate anticipated poor assembly junction sequence performance. Software integrated with j5 add significant value to the j5 design process through graphical user-interface enhancement and downstream liquid-handling robotic laboratory automation.
Key words
- DNA assembly
- Design automation
- BioCAD
- Combinatorial library
- Synthetic biology
This is a preview of subscription content, access via your institution.
Buying options




References
Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3:109–118. doi:10.1039/c0ib00070a
Hillson NJ (2011) DNA assembly method standardization for synthetic biomolecular circuits and systems. In: Koeppl H, Densmore D, di Bernardo M, Setti G (eds) Design and analysis of bio-molecular circuits, 1st edn. Springer, New York, pp 295–314
Densmore D, Hsiau TH, Kittleson JT et al (2010) Algorithms for automated DNA assembly. Nucleic Acids Res 38:2607–2616. doi:10.1093/nar/gkq165
Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5. doi:10.1186/1754-1611-2-5
Anderson JC, Dueber JE, Leguia M et al (2010) BglBricks: a flexible standard for biological part assembly. J Biol Eng 4:1. doi:10.1186/1754-1611-4-1
Leguia M, Brophy J, Densmore D et al (2011) Automated assembly of standard biological parts. Methods Enzymol 498:363–397. doi:10.1016/B978-0-12-385120-8.00016-4
Beal J, Weiss R, Densmore D et al (2012) An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synth Biol 1:317. doi:10.1021/sb300030d
Weber E, Engler C, Gruetzner R et al (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765. doi:10.1371/journal.pone.0016765
Sarrion-Perdigones A, Falconi EE, Zandalinas SI et al (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622. doi:10.1371/journal.pone.0021622
Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4:e6441. doi:10.1371/journal.pone.0006441
Shao Z, Luo Y, Zhao H (2011) Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol Biosyst 7:1056–1059. doi:10.1039/c0mb00338g
Carothers JM, Goler JA, Juminaga D et al (2011) Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334:1716–1719. doi:10.1126/science.1212209
Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950. doi:10.1038/nbt.1568
Egbert RG, Klavins E (2012) Fine-tuning gene networks using simple sequence repeats. Proc Natl Acad Sci U S A 109:16817–16822. doi:10.1073/pnas.1205693109
Mutalik VK, Guimaraes JC, Cambray G et al (2013) Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods 10(4):347–353. doi:10.1038/nmeth.2403
Mutalik VK, Guimaraes JC, Cambray G et al (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10(4):354 –360
Hillson NJ, Rosengarten RD, Keasling JD (2012) j5 DNA assembly design automation software. ACS Synth Biol 1:14–21. doi:10.1021/Sb2000116
Chen J, Densmore D, Ham TS et al (2012) DeviceEditor visual biological CAD canvas. J Biol Eng 6:1. doi:10.1186/1754-1611-6-1
Ham TS, Dmytriv Z, Plahar H et al (2012) Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucleic Acids Res 40:e141. doi:10.1093/nar/gks531
Linshiz G, Stawski N, Poust S et al (2012) PaR-PaR laboratory automation platform. ACS Synth Biol 2:216–222. doi:10.1021/sb300075t
Thieme F, Engler C, Kandzia R et al (2011) Quick and clean cloning: a ligation-independent cloning strategy for selective cloning of specific PCR products from non-specific mixes. PLoS One 6:e20556. doi:10.1371/journal.pone.0020556
Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256. doi:10.1038/nmeth1010
You C, Zhang XZ, Zhang YH (2012) Simple cloning via direct transformation of PCR product (DNA Multimer) to Escherichia coli and Bacillus subtilis. Appl Environ Microbiol 78:1593–1595. doi:10.1128/AEM.07105-11
Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251. doi:10.1038/nprot.2010.181
Erijman A, Dantes A, Bernheim R et al (2011) Transfer-PCR (TPCR): a highway for DNA cloning and protein engineering. J Struct Biol 175:171–177. doi:10.1016/j.jsb.2011.04.005
Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40:e55. doi:10.1093/nar/gkr1288
Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi:10.1038/nmeth.1318
Ramon A, Smith HO (2011) Single-step linker-based combinatorial assembly of promoter and gene cassettes for pathway engineering. Biotechnol Lett 33:549–555. doi:10.1007/s10529-010-0455-x
Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16. doi:10.1093/nar/gkn991
Wingler LM, Cornish VW (2011) Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc Natl Acad Sci U S A 108:15135–15140. doi:10.1073/pnas.1100507108
j5 website. http://j5.jbei.org
Gibthon website. http://gibthon.org
Richardson SM, Liu S, Boeke JD et al (2012) Design-A-Gene with GeneDesign. Methods Mol Biol 852:235–247. doi:10.1007/978-1-61779-564-0_18
Richardson SM, Nunley PW, Yarrington RM et al (2010) GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res 38:2603–2606. doi:10.1093/nar/gkq143
GeneDesign website. http://54.235.254.95/gd/
Convert PCR Primers Into In-Fusion® Primers website. http://www.clontech.com/US/Products/Cloning_and_Competent_Cells/Cloning_Kits/xxclt_onlineToolsLoad.jsp?citemId=http://bioinfo.clontech.com/infusion/convertPcrPrimersInit.do%26xxheight=750
GeneArt® Primer and Construct Design Tool website. http://bioinfo.invitrogen.com/oligoDesigner
Engler C, Gruetzner R, Kandzia R et al (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIS restriction enzymes. PLoS One 4:e5553. doi:10.1371/journal.pone.0005553
Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647. doi:10.1371/journal.pone.0003647
Engler C, Marillonnet S (2011) Generation of families of construct variants using golden gate shuffling. Methods Mol Biol 729:167–181. doi:10.1007/978-1-61779-065-2_11
Geertsma ER, Dutzler R (2011) A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry 50:3272–3278. doi:10.1021/bi200178z
Bitinaite J, Rubino M, Varma KH et al (2007) USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35:1992. doi:10.1093/nar/gkm041
Annaluru N, Muller H, Ramalingam S (2012) Assembling DNA fragments by USER fusion. Methods Mol Biol 852:77–95. doi:10.1007/978-1-61779-564-0_7
Olsen LR, Hansen NB, Bonde MT et al (2011) PHUSER (Primer Help for USER): a novel tool for USER fusion primer design. Nucleic Acids Res 39:W61–W67. doi:10.1093/nar/gkr394
PHUSER website. http://www.cbs.dtu.dk/services/phuser/
TeselaGen website. http://teselagen.com
VectorEditor stand-alone software. https://public-registry.jbei.org/static/vesa/VectorEditor.html
Public instance of the JBEI Parts Registry. http://public-registry.jbei.org
VectorEditor Project. http://code.google.com/p/vectoreditor/
PaR-PaR website. http://prpr.jbei.org
PaR-PaR source code github repository. https://github.com/jbei/prpr
Synthetic Biology Open Language visual standard. http://www.sbolstandard.org/visual
j5 user’s manual. http://j5.jbei.org/j5manual/index.html
Eugene website. http://eugenecad.org/
Bilitchenko L, Liu A, Cheung S et al (2011) Eugene—a domain specific language for specifying and constraining synthetic biological parts, devices, and systems. PLoS One 6:e18882. doi:10.1371/journal.pone.0018882
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
DINAMelt web server. http://mfold.rna.albany.edu/?q=DINAMelt/Quickfold
j5, DeviceEditor, and VectorEditor demonstration video. http://j5.jbei.org/j5_and_DeviceEditor_Demo_Movie.mov
DeviceEditor user’s manual. http://j5.jbei.org/DeviceEditor_manual/index.html
A plasmid Editor (ApE) software. http://biologylabs.utah.edu/jorgensen/wayned/ape/
j5 web-form interface. http://j5.jbei.org/bin/j5_entry_form.pl
Clotho website. http://clothocad.org
Xia B, Bhatia S, Bubenheim B (2011) Developer’s and user’s guide to Clotho v2.0 A software platform for the creation of synthetic biological systems. Methods Enzymol 498:97–135. doi:10.1016/B978-0-12-385120-8.00005-X
DeviceEditor software. http://j5.jbei.org/bin/deviceeditor.pl
Acknowledgments
Conflict of Interest Statement: The author declares competing financial interests in the form of pending patent applications related to the j5 software, and equity in TeselaGen Biotechnology, Inc. This work conducted by the Joint BioEnergy Institute and the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The author thanks Joanna Chen for constructive comments on the manuscript.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media, New York
About this protocol
Cite this protocol
Hillson, N.J. (2014). j5 DNA Assembly Design Automation. In: Valla, S., Lale, R. (eds) DNA Cloning and Assembly Methods. Methods in Molecular Biology, vol 1116. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-764-8_17
Download citation
DOI: https://doi.org/10.1007/978-1-62703-764-8_17
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-62703-763-1
Online ISBN: 978-1-62703-764-8
eBook Packages: Springer Protocols