Design and Construction of Multigenic Constructs for Plant Biotechnology Using the GoldenBraid Cloning Strategy

  • Alejandro Sarrion-Perdigones
  • Jorge Palaci
  • Antonio Granell
  • Diego Orzaez
Part of the Methods in Molecular Biology book series (MIMB, volume 1116)


GoldenBraid (GB) is an iterative and standardized DNA assembling system specially designed for Multigene Engineering in Plant Synthetic Biology. GB is based on restriction–ligation reactions using type IIS restriction enzymes. GB comprises a collection of standard DNA pieces named “GB parts” and a set of destination plasmids (pDGBs) that incorporate the multipartite assembly of standardized DNA parts. GB reactions are extremely efficient: two transcriptional units (TUs) can be assembled from several basic GBparts in one T-DNA less than 24 h. Moreover, larger assemblies comprising 4–5 TUs are routinely built in less than 2 working weeks. Here we provide a detailed view of the GB methodology. As a practical example, a Bimolecular Fluorescence Complementation construct comprising four TUs in a 12 kb DNA fragment is presented.

Key words

Synthetic biology DNA assembly Type IIS enzymes Plant biotechnology Multigene constructs Multigene engineering 



We want to thank Dr. Alejandro Ferrando sharing BiFC vectors and Dr. Cristina Ferrandiz for help with protein-protein interaction examples. This work was supported by the Spanish Ministry of Economy and Competitiveness: Grant BIO2010-15384. A. Sarrion-Perdigones is recipient of a Research Personnel in Training (FPI) fellowship.


  1. 1.
    Haseloff J, Ajioka J (2009) Synthetic biology, history, challenges and prospects. J R Soc Interface 6(Suppl 4):S389–S391PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Check E (2005) Synthetic biology, designs on life. Nature 438:417–418PubMedCrossRefGoogle Scholar
  3. 3.
    Kosuri S, Eroshenko N, LeProust EM et al (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology, from parts to pathways and beyond. Integr Biol 3:109–118CrossRefGoogle Scholar
  5. 5.
    Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345PubMedCrossRefGoogle Scholar
  6. 6.
    Gibson DG, Glass JI, Lartigue C et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56PubMedCrossRefGoogle Scholar
  7. 7.
    Sarrion-Perdigones A, Falconi EE, Zandalinas SI et al (2011) GoldenBraid, an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sarrion-Perdigones A, Vilar-Vazquez M et al (2013) GoldenBraid2.0, A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162:1618–1631PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Engler C, Gruetzner R, Kandzia R (2009) Golden gate shuffling, a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Bracha-Drori K, Shichrur K, Katz A et al (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427PubMedCrossRefGoogle Scholar
  12. 12.
    Smaczniak C, Immink RG, Muino JM et al (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109:1560–1565PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    de Folter S, Immink RG, Kieffer M et al (2005) Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17:1424–1433PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lorenz WW, McCann RO, Longiaru M et al (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88:4438–4442PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96: 14147–14152PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Hellens RP, Edwards EA, Leyland NR et al (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832PubMedCrossRefGoogle Scholar
  17. 17.
    Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26: 1301–1308PubMedCrossRefGoogle Scholar
  18. 18.
    Kapila J, DeRycke R, VanMontagu M et al (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Alejandro Sarrion-Perdigones
    • 1
  • Jorge Palaci
    • 1
  • Antonio Granell
    • 1
  • Diego Orzaez
    • 1
  1. 1.Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations