Skip to main content

Targeting piggyBac Transposon Integrations in the Human Genome

  • Protocol
  • First Online:
Gene Correction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1114))

Abstract

DNA based transposon systems offer a technology for active and efficient delivery of genes into human cells. An emerging field is directed at manipulating such systems to achieve site-directed integration as compared to un-targeted integration which occurs with native or unmodified transposon systems. The naturally active piggyBac transposon system is derived from insects but has been shown to be very efficient in gene-modifying human cells. Recent efforts have utilized the fusion of DNA binding domains to the piggyBac transposase enzyme with the goal of targeting integration to specific locations in the human genome. In this chapter, we describe methodology for engineering and characterizing chimeric piggyBac transposase enzymes, including experimental approaches for evaluating activity and targeting specificity in the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169

    Article  CAS  PubMed  Google Scholar 

  2. Fraser MJ, Cary L, Boonvisudhi K, Wang HG (1995) Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211:397–407

    Article  CAS  PubMed  Google Scholar 

  3. Wilson MH, Coates CJ, George AL Jr (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145

    Article  CAS  PubMed  Google Scholar 

  4. Li MA, Turner DJ, Ning Z et al (2011) Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res 39:e148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nakazawa Y, Huye LE, Dotti G et al (2009) Optimization of the PiggyBac transposon system for the sustained genetic modification of human T lymphocytes. J Immunother 32:826–836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Fraser MJ, Ciszczon T, Elick T, Bauser C (1996) Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5:141–151

    Article  CAS  PubMed  Google Scholar 

  7. Maragathavally KJ, Kaminski JM, Coates CJ (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20:1880–1882

    Article  CAS  PubMed  Google Scholar 

  8. Kettlun C, Galvan DL, George AL, Kaja A, Wilson MH (2011) Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther 19:1636–1644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Owens JB, Urschitz J, Stoytchev I et al (2012) Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 40:6978–6991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang H, Mayhew D, Chen X, Johnston M, Mitra RD (2012) “Calling cards” for DNA-binding proteins in mammalian cells. Genetics 190:941–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tan SY, Guschin D, Davalos A et al (2003) Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc Natl Acad Sci USA 100:11997–12002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369

    Article  CAS  PubMed  Google Scholar 

  13. Wilson MH, Kaminski JM, George AL Jr (2005) Functional zinc finger/sleeping beauty transposase chimeras exhibit attenuated overproduction inhibition. FEBS Lett 579:6205–6209

    Article  CAS  PubMed  Google Scholar 

  14. Ivics Z, Katzer A, Stuwe EE, Fiedler D, Knespel S, Izsvak Z (2007) Targeted Sleeping Beauty transposition in human cells. Mol Ther 15:1137–1144

    CAS  PubMed  Google Scholar 

  15. Yant SR, Huang Y, Akache B, Kay MA (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35:e50

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wu SC, Meir YJ, Coates CJ et al (2006) piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103:15008–15013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108:1531–1536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Doherty JE, Huye LE, Yusa K, Zhou L, Craig NL, Wilson MH (2012) Hyperactive piggyBac gene transfer in human cells and in vivo. Hum Gene Ther 23:311–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cadinanos J, Bradley A (2007) Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35:e87

    Article  PubMed Central  PubMed  Google Scholar 

  20. Geurts AM, Yang Y, Clark KJ et al (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther 8:108–117

    Article  CAS  PubMed  Google Scholar 

  21. Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol Ther 9:292–304

    Article  CAS  PubMed  Google Scholar 

  22. Wang W, Lin C, Lu D et al (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105:9290–9295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

M.H.W. would like to acknowledge support from a Career Development Award from the Department of Veterans Affairs and NIH R01 DK093660.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Galvan, D.L., Kettlun, C.S., Wilson, M.H. (2014). Targeting piggyBac Transposon Integrations in the Human Genome. In: Storici, F. (eds) Gene Correction. Methods in Molecular Biology, vol 1114. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-761-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-761-7_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-760-0

  • Online ISBN: 978-1-62703-761-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics