Portal Vein Delivery of Viral Vectors for Gene Therapy for Hemophilia

Part of the Methods in Molecular Biology book series (MIMB, volume 1114)


The liver is a very complex organ with a large variety of functions, making it an attractive organ for gene replacement therapy. Many genetic disorders can be corrected by delivering gene products directly into the liver using viral vectors. In this chapter, we will describe gene delivery via portal vein administration in mice and dogs to correct the blood coagulation disorder hemophilia B. Although there are multiple delivery routes for both viral and non-viral vectors in animals, portal vein administration delivers vectors directly and efficiently into the liver. Complete correction of murine hemophilia B and multi-year near-correction of canine hemophilia B have been achieved following portal vein delivery of adeno-associated viral (AAV) vectors expressing factor IX from hepatocyte-specific promoters. Peripheral vein injection can lead to increased vector dissemination to off-target organ such as the lung and spleen. Below, we will describe portal vein injection delivery route via laparotomy.

Key words

Liver Gene therapy Portal vein Viral vectors AAV 


  1. 1.
    Sarkar R, Xiao W, Kazazian HH Jr (2003) A single adeno-associated virus (AAV)-murine factor VIII vector partially corrects the hemophilia A phenotype. J Thromb Haemost 1:220–226PubMedCrossRefGoogle Scholar
  2. 2.
    Jiang H, Lillicrap D, Patarroyo-White S, Liu T, Qian X, Scallan CD, Powell S, Keller T, McMurray M, Labelle A, Nagy D, Vargas JA, Zhou S, Couto LB, Pierce GF (2006) Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 108:107–115PubMedCrossRefGoogle Scholar
  3. 3.
    Markusic DM (2012) Liver-directed adeno-associated viral gene therapy for hemophilia. J Genet Syndr Gene Ther S1:009Google Scholar
  4. 4.
    Mingozzi F, Hasbrouck NC, Basner-Tschakarjan E, Edmonson SA, Hui DJ, Sabatino DE, Zhou S, Wright JF, Jiang H, Pierce GF, Arruda VR, High KA (2007) Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood 110:2334–2341PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Mount JD, Herzog RW, Tillson DM, Goodman SA, Robinson N, McCleland ML, Bellinger D, Nichols TC, Arruda VR, Lothrop CD Jr, High KA (2002) Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 99:2670–2676PubMedCrossRefGoogle Scholar
  6. 6.
    Snyder RO, Miao C, Meuse L, Donahue BA, Lin H-F, Stafford DW, Patel S, Thompson A, Nichols T, Bellinger D, Read M, Brinkhous KM, Kay MA (1999) Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med 5:64–70PubMedCrossRefGoogle Scholar
  7. 7.
    Nichols TC, Raymer RA, Franck HW, Merricks EP, Bellinger DA, DeFriess N, Margaritis P, Arruda VR, Kay MA, High KA (2010) Prevention of spontaneous bleeding in dogs with haemophilia A and haemophilia B. Haemophilia 16(Suppl 3):19–23PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Niemeyer GP, Herzog RW, Mount J, Arruda VR, Tillson DM, Hathcock J, van Ginkel FW, High KA, Lothrop CD Jr (2009) Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 113:797–806PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Sabatino DE, Lange AM, Altynova ES, Sarkar R, Zhou S, Merricks EP, Franck HG, Nichols TC, Arruda VR, Kazazian HH Jr (2011) Efficacy and safety of long-term prophylaxis in severe hemophilia A dogs following liver gene therapy using AAV vectors. Mol Ther 19:442–449PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Annoni A, Brown BD, Cantore A, Sergi LS, Naldini L, Roncarolo MG (2009) In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood 114:5152–5161PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Cao O, Dobrzynski E, Wang L, Nayak S, Mingle B, Terhorst C, Herzog RW (2007) Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 110:1132–1140PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hoffman BE, Martino AT, Sack BK, Cao O, Liao G, Terhorst C, Herzog RW (2011) Nonredundant roles of IL-10 and TGF-beta in suppression of immune responses to hepatic AAV-factor IX gene transfer. Mol Ther 19:1263–1272PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    LoDuca PA, Hoffman BE, Herzog RW (2009) Hepatic gene transfer as a means of tolerance induction to transgene products. Curr Gene Ther 9:104–114PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, Chowdary P, Riddell A, Pie AJ, Harrington C, O'Beirne J, Smith K, Pasi J, Glader B, Rustagi P, Ng CY, Kay MA, Zhou J, Spence Y, Morton CL, Allay J, Coleman J, Sleep S, Cunningham JM, Srivastava D, Basner-Tschakarjan E, Mingozzi F, High KA, Gray JT, Reiss UM, Nienhuis AW, Davidoff AM (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365:2357–3265PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341–355PubMedCrossRefGoogle Scholar
  16. 16.
    Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Rustagi PK, Nakai H, Chew A, Leonard D, Wright JF, Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A, Jiang H, Mingozzi F, Couto L, Ertl HC, High KA, Kay MA (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342–347PubMedCrossRefGoogle Scholar
  17. 17.
    Cooper M, Nayak S, Hoffman BE, Terhorst C, Cao O, Herzog RW (2009) Improved induction of immune tolerance to factor IX by hepatic AAV-8 gene transfer. Hum Gene Ther 20:767–776PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D, Nawathe S, Waddington SN, Bronson R, Jackson S, Donahue RE, High KA, Mingozzi F, Ng CY, Zhou J, Spence Y, McCarville MB, Valentine M, Allay J, Coleman J, Sleep S, Gray JT, Nienhuis AW, Davidoff AM (2011) Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther 19:876–885PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wang L, Takabe K, Bidlingmaier SM, III CR, Verma IM (1999) Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci U S A 96:3906–3910PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Mingozzi F, Schuttrumpf J, Arruda VR, Liu Y, Liu YL, High KA, Xiao W, Herzog RW (2002) Improved hepatic gene transfer by using an adeno-associated virus serotype 5 vector. J Virol 76:10497–10502PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Markusic DM, Herzog RW, Aslanidi GV, Hoffman BE, Li B, Li M, Jayandharan GR, Ling C, Zolotukhin I, Ma W, Zolotukhin S, Srivastava A, Zhong L (2010) High-efficiency transduction and correction of murine hemophilia B using AAV2 vectors devoid of multiple surface-exposed tyrosines. Mol Ther 18:2048–2056PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Sack BK, Merchant S, Markusic DM, Nathwani AC, Davidoff AM, Byrne BJ, Herzog RW (2012) Transient B cell depletion or improved transgene expression by codon optimization promote tolerance to factor VIII in gene therapy. PLoS One 7:e37671PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wu Z, Sun J, Zhang T, Yin C, Yin F, Van Dyke T, Samulski RJ, Monahan PE (2008) Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther 16:280–289PubMedCrossRefGoogle Scholar
  24. 24.
    Cao O, Hoffman BE, Moghimi B, Nayak S, Cooper M, Zhou S, Ertl HC, High KA, Herzog RW (2009) Impact of the underlying mutation and the route of vector administration on immune responses to factor IX in gene therapy for hemophilia B. Mol Ther 17:1733–1742PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Sabatino DE, Nichols TC, Merricks E, Bellinger DA, Herzog RW, Monahan PE (2012) Animal models of hemophilia. Prog Mol Biol Transl Sci 105:151–209PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Margaritis P, Roy E, Aljamali MN, Downey HD, Giger U, Zhou S, Merricks E, Dillow A, Ezban M, Nichols TC, High KA (2009) Successful treatment of canine hemophilia by continuous expression of canine FVIIa. Blood 113:3682–3689PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Evans JP, Brinkhous KM, Brayer GD, Reisner HM, High KA (1989) Canine hemophilia B resulting from a point mutation with unusual consequences. Proc Natl Acad Sci U S A 86:10095–10099PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Herzog R, Arruda VR, Fischer TH, Read MS, Nichols TC, High KA (2000) Absence of circulating factor IX antigen in hemophilia B dogs of the UNC-Chapel Hill colony. Thromb Haemost 84:352–354PubMedCentralPubMedGoogle Scholar
  29. 29.
    Russell KE, Olsen EH, Raymer RA, Merricks EP, Bellinger DA, Read MS, Rup BJ, Keith JC Jr, McCarthy KP, Schaub RG, Nichols TC (2003) Reduced bleeding events with subcutaneous administration of recombinant human factor IX in immune-tolerant hemophilia B dogs. Blood 102:4393–4398PubMedCrossRefGoogle Scholar
  30. 30.
    Russell KE, Read MS, Bellinger DA, Leitermann K, Rup BJ, McCarthy KP, Keith JC Jr, Khor SP, Schaub RG, Nichols TC (2001) Intratracheal administration of recombinant human factor IX (BeneFix) achieves therapeutic levels in hemophilia B dogs. Thromb Haemost 85:445–449PubMedGoogle Scholar
  31. 31.
    Brinkhous KM, Sigman JL, Read MS, Stewart PF, McCarthy KP, Timony GA, Leppanen SD, Rup BJ, Keith JC Jr, Garzone PD, Schaub RG (1996) Recombinant human factor IX: replacement therapy, prophylaxis, and pharmacokinetics in canine hemophilia B. Blood 88:2603–2610PubMedGoogle Scholar
  32. 32.
    Shapiro AD, Ragni MV, Valentino LA, Key NS, Josephson NC, Powell JS, Cheng G, Thompson AR, Goyal J, Tubridy KL, Peters RT, Dumont JA, Euwart D, Li L, Hallen B, Gozzi P, Bitonti AJ, Jiang H, Luk A, Pierce GF (2012) Recombinant factor IX-Fc fusion protein (rFIXFc) demonstrates safety and prolonged activity in a phase 1/2a study in hemophilia B patients. Blood 119:666–672PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Roth DA, Kessler CM, Pasi KJ, Rup B, Courter SG, Tubridy KL (2001) Human recombinant factor IX: safety and efficacy studies in hemophilia B patients previously treated with plasma-derived factor IX concentrates. Blood 98:3600–3606PubMedCrossRefGoogle Scholar
  34. 34.
    Arruda VR, Fields PA, Milner R, Wainwright L, De Miguel MP, Donovan PJ, Herzog RW, Nichols TC, Biegel JA, Razavi M, Dake M, Huff D, Flake AW, Couto L, Kay MA, High KA (2001) Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. Mol Ther 4:586–592PubMedCrossRefGoogle Scholar
  35. 35.
    Nichols TC, Franck HWG, Franck C, Raymer RA, Merricks EP (2012) Sensitivity of whole blood clotting time and activated partial thromboplastin time for canine factor IX. J Thromb Haemost 10:474–476PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of FloridaGainesvilleUSA
  2. 2.Department of MedicineDrexel UniversityPhiladelphiaUSA
  3. 3.Francis Owen Blood Research LaboratoryUniversity of North CarolinaChapel HillUSA

Personalised recommendations