Skip to main content

Lentiviral Vectors Encoding Zinc-Finger Nucleases Specific for the Model Target Locus HPRT1

  • Protocol
  • First Online:
Gene Correction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1114))

Abstract

Zinc-finger nucleases (ZFNs) are artificial proteins designed to induce double-stranded DNA breaks (DSBs) at predefined chromosomal positions. These site-specific genomic lesions facilitate the study of translocations and cellular DNA repair processes and serve as powerful stimuli for the editing of complex genomes. The delivery of ZFNs into a wide range of cell types is of utmost importance for the broad evaluation and deployment of the technology. Lentiviral vectors (LVs) are versatile gene delivery vehicles that transduce alike transformed and primary cells regardless of their division rate. In this chapter, we describe the generation of conventional and integrase-defective LVs encoding ZFNs targeting the human hypoxanthine phosphoribosyltransferase 1 (HPRT1) locus. Furthermore, we introduce a general LV titration method based on a cost-effective quantitative PCR protocol and implement a rapid and simple restriction enzyme site polymorphism assay to detected DSB formation at the HPRT1 target sequence. Owing in part to the small molecule-based clone selection schemes conferred by HPRT1 allelic knockouts, this X-linked gene has become a “classical” target model locus in mammalian cells. The reagents and techniques detailed herein yield LV preparations that induce HPRT1-specific DSBs. As a result, they should constitute a valuable resource to increase the robustness and decrease the timelines of the various protocols based on HPRT1 gene disruption and targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    Article  CAS  PubMed  Google Scholar 

  2. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mussolino C, Cathomen T (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 23:644–650

    Article  CAS  PubMed  Google Scholar 

  4. Perez-Pinera P, Ousterout DG, Gersbach CA (2012) Advances in targeted genome editing. Curr Opin Chem Biol 16:268–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brunet E, Simsek D, Tomishima M, DeKelver R, Choi VM, Gregory P, Urnov F, Weinstock DM, Jasin M (2009) Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci U S A 106:10620–10625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Naldini L (2011) Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 12:301–315

    Article  CAS  PubMed  Google Scholar 

  7. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dropulić B (2011) Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther 22:649–657

    Article  PubMed  Google Scholar 

  10. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398, Erratum in: Curr Gene Ther 5:531, 2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Philpott NJ, Thrasher AJ (2007) Use of nonintegrating lentiviral vectors for gene therapy. Hum Gene Ther 18:483–489

    Article  CAS  PubMed  Google Scholar 

  12. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kuroda H, Kutner RH, Bazan NG, Reiser J (2009) Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection. J Virol Methods 157:113–12

    Article  CAS  PubMed  Google Scholar 

  14. Segura MM, Garnier A, Durocher Y, Ansorge S, Kamen A (2010) New protocol for lentiviral vector mass production. Methods Mol Biol 614:39–52

    Article  CAS  PubMed  Google Scholar 

  15. Askar SF, Bingen BO, Swildens J, Ypey DL, van der Laarse A, Atsma DE, Zeppenfeld K, Schalij MJ, de Vries AAF, Pijnappels DA (2012) Connexin43 silencing in myofibroblasts prevents arrhythmias in myocardial cultures: role of maximal diastolic potential. Cardiovasc Res 93:434–444

    Article  CAS  PubMed  Google Scholar 

  16. Pelascini LP, Janssen JM, Gonçalves MAFV (2013) Histone deacetylase inhibition activates transgene expression from integration-defective lentiviral vectors in dividing and non-dividing cells. Hum Gene Ther 24:78–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Torres RJ, Puig JG (2007) Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis 2:e48

    Article  Google Scholar 

  18. Szybalski W (1992) Use of the HPRT gene and the HAT selection technique in DNA-mediated transformation of mammalian cells: First steps toward developing hybridoma techniques and gene therapy. Bioessays 14:495–500

    Article  CAS  PubMed  Google Scholar 

  19. Milstein C (1999) The hybridoma revolution: an offshoot of basic research. Bioessays 21:966–973

    Article  CAS  PubMed  Google Scholar 

  20. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578

    Article  CAS  PubMed  Google Scholar 

  21. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  CAS  PubMed  Google Scholar 

  22. Miller AD, Jolly DJ, Friedmann T, Verma IM (1983) A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT. Proc Natl Acad Sci U S A 80:4709–4713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gonçalves MAFV (2005) A concise peer into the background, initial thoughts and practices of human gene therapy. Bioessays 17:506–517

    Article  Google Scholar 

  24. Charrier S, Stockholm D, Seye K, Opolon P, Taveau M, Gross DA, Bucher-Laurent S, Delenda C, Vainchenker W, Danos O, Galy A (2005) A lentiviral vector encoding the human Wiskott-Aldrich syndrome protein corrects immune and cytoskeletal defects in WASP knockout mice. Gene Ther 12:597–606

    Article  CAS  PubMed  Google Scholar 

  25. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  26. Higashikawa F, Chang L (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280:124–131

    Article  CAS  PubMed  Google Scholar 

  27. Wanisch K, Yáñez-Muñoz RJ (2009) Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 17:1316–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Giry-Laterrière M, Verhoeyen E, Salmon P (2011) Lentiviral vectors. Methods Mol Biol 737:183–209

    Article  PubMed  Google Scholar 

  29. Hou Y, Zhang H, Miranda L, Lin S (2010) Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: microalgal pcna as the model gene. PLoS One 5(3):e9545

    Article  PubMed Central  PubMed  Google Scholar 

  30. Delenda C, Gaillard C (2005) Real-time quantitative PCR for the design of lentiviral vector analytical assays. Gene Ther 12:S36–S50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Antoine A.F. de Vries (Department of Cardiology, LUMC, The Netherlands) for technical assistance in setting up the PEI transfection protocol and Ignazio Maggio (Department of Molecular Cell Biology, LUMC, The Netherlands) for generating the ZFN-encoding lentiviral vector transfer plasmids. We also thank Prof. Rob Hoeben (Department of Molecular Cell Biology, LUMC, The Netherlands) for his critical reading of the manuscript. This work was supported by the Prinses Beatrix Spierfonds (grant W.OR11-18) and by the European Community’s 7th Framework Programme for Research and Technological Development: PERSIST-Persisting Transgenesis (grant agreement number 222878).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pelascini, L.P.L., Gonçalves, M.A.F.V. (2014). Lentiviral Vectors Encoding Zinc-Finger Nucleases Specific for the Model Target Locus HPRT1 . In: Storici, F. (eds) Gene Correction. Methods in Molecular Biology, vol 1114. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-761-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-761-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-760-0

  • Online ISBN: 978-1-62703-761-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics