Skip to main content

Multienzyme Kinetics and Sequential Metabolism

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

Enzymes are the catalysts of biological systems and are extremely efficient. A typical enzyme accelerates the rate of a reaction by factors of at least a million compared to the rate of the same reaction in the absence of the enzyme. In contrast to traditional catalytic enzymes, the family of cytochrome P450 (CYP) enzymes are catalytically promiscuous, and thus they possess remarkable versatility in substrates. The great diversity of reactions catalyzed by CYP enzymes appears to be based on two unique properties of these heme proteins, the ability of their iron to exist under multiple oxidation states with different reactivities and a flexible active site that can accommodate a wide variety of substrates. Herein is a discussion of two distinct types of kinetics observed with CYP enzymes. The first example is of CYP complex kinetic profiles when multiple CYP enzymes form the sample product. The second is sequential metabolism, in other words, the formation of multiple products from one CYP enzyme. Given the degree of CYP enzyme promiscuity, it is hardly surprising that there is also a high degree of complex kinetic profiles generated during the catalytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci U S A 44(2):98–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Albery WJ, Knowles JR (1976) Free-energy profile of the reaction catalyzed by triosephosphate isomerase. Biochemistry 15(25):5627–5631

    Article  CAS  PubMed  Google Scholar 

  3. Storm DR, Koshland DE (1970) A source for the special catalytic power of enzymes: orbital steering. Proc Natl Acad Sci U S A 66(2):445–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Pauling L, Delbruck M (1940) The nature of the intermolecular forces operative in biological processes. Science 92(2378):77–79. doi:10.1126/science.92.2378.77

    Article  CAS  PubMed  Google Scholar 

  5. Lienhard GE (1973) Enzymatic catalysis and transition-state theory. Science 180(4082):149–154

    Article  CAS  PubMed  Google Scholar 

  6. Porter TD, Coon MJ (1991) Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem 266(21):13469–13472

    CAS  PubMed  Google Scholar 

  7. Wienkers LC, Heath TG (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4(10):825–833. doi:10.1038/nrd1851

    Article  CAS  PubMed  Google Scholar 

  8. Coon MJ, Vaz AD, McGinnity DF, Peng HM (1998) Multiple activated oxygen species in P450 catalysis: contributions to specificity in drug metabolism. Drug Metab Dispos 26(12):1190–1193

    CAS  PubMed  Google Scholar 

  9. de Visser SP, Ogliaro F, Sharma PK, Shaik S (2002) What factors affect the regioselectivity of oxidation by cytochrome p450? A DFT study of allylic hydroxylation and double bond epoxidation in a model reaction. J Am Chem Soc 124(39):11809–11826

    Article  PubMed  Google Scholar 

  10. Jones JP, Korzekwa KR (1996) Predicting the rates and regioselectivity of reactions mediated by the P450 superfamily. Methods Enzymol 272:326–335

    Article  CAS  PubMed  Google Scholar 

  11. He M, Rettie AE, Neal J, Trager WF (2001) Metabolism of sulfinpyrazone sulfide and sulfinpyrazone by human liver microsomes and cDNA-expressed cytochrome P450s. Drug Metab Dispos 29(5):701–711

    CAS  PubMed  Google Scholar 

  12. Isoherranen N, Kunze KL, Allen KE, Nelson WL, Thummel KE (2004) Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos 32(10):1121–1131

    Article  CAS  PubMed  Google Scholar 

  13. Templeton IE, Thummel KE, Kharasch ED, Kunze KL, Hoffer C, Nelson WL, Isoherranen N (2007) Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clin Pharmacol Ther 83(1):77–85

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sugiyama K, Nagata K, Gillette JR, Darbyshire JF (1994) Theoretical kinetics of sequential metabolism in vitro. Study of the formation of 16 alpha-hydroxyandrostenedione from testosterone by purified rat P450 2C11. Drug Metab Dispos 22(4):584–591

    CAS  PubMed  Google Scholar 

  15. Varon R, Havsteen BH, Valero E, Molina-Alarcon M, Garcia-Canovas F, Garcia-Moreno M (2005) Kinetic analysis of the transient phase and steady state of open multicyclic enzyme cascades. Acta Biochim Pol 52(4):765–780

    CAS  PubMed  Google Scholar 

  16. Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems, 1st edn. Wiley, New York

    Google Scholar 

  17. Lakowski TM, Frankel A (2009) Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem J 421(2):253–261

    Article  CAS  PubMed  Google Scholar 

  18. Rane A, Wilkinson GR, Shand DG (1977) Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance. J Pharmacol Exp Ther 200(2):420–424

    CAS  PubMed  Google Scholar 

  19. Michaelis L, Menten ML, Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50(39):8264–8269. doi:10.1021/bi201284u

    Article  PubMed  Google Scholar 

  20. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666. doi:10.1021/ja01318a036

    Article  CAS  Google Scholar 

  21. Eadie GS (1942) The inhibition of cholinesterase by physostigmine and prostigmine. J Biol Chem 146(1):85–93

    CAS  Google Scholar 

  22. Hofstee BH (1959) Non-inverted versus inverted plots in enzyme kinetics. Nature 184:1296–1298

    Article  CAS  PubMed  Google Scholar 

  23. Nakashima A, Kawashita H, Masuda N, Saxer C, Niina M, Nagae Y, Iwasaki K (2005) Identification of cytochrome P450 forms involved in the 4-hydroxylation of valsartan, a potent and specific angiotensin II receptor antagonist, in human liver microsomes. Xenobiotica 35(6):589–602. doi:10.1080/00498250500158175

    Article  CAS  PubMed  Google Scholar 

  24. Wienkers LC, Wynalda MA (2002) Multiple cytochrome P450 enzymes responsible for the oxidative metabolism of the substituted (S)-3-phenylpiperidine, (S,S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine hydrochloride, in human liver microsomes. Drug Metab Dispos 30(12):1372–1377

    Article  CAS  PubMed  Google Scholar 

  25. Jones BC, Hyland R, Ackland M, Tyman CA, Smith DA (1998) Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab Dispos 26(9):875–882

    CAS  PubMed  Google Scholar 

  26. Silverman RB (1988) Mechanism-based enzyme inactivation: chemistry and enzymology. CRC Press, Boca Raton, FL

    Google Scholar 

  27. Atrakchi AH (2009) Interpretation and considerations on the safety evaluation of human drug metabolites. Chem Res Toxicol 22(7):1217–1220

    Article  CAS  PubMed  Google Scholar 

  28. Baillie TA (2008) Metabolism and toxicity of drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol 21(1):129–137

    Article  PubMed  Google Scholar 

  29. Smith DA, Obach RS (2006) Metabolites and safety: what are the concerns, and how should we address them? Chem Res Toxicol 19(12):1570–1579

    Article  CAS  PubMed  Google Scholar 

  30. Smith DA, Obach RS (2009) Metabolites in safety testing (MIST): considerations of mechanisms of toxicity with dose, abundance, and duration of treatment. Chem Res Toxicol 22(2):267–279

    Article  CAS  PubMed  Google Scholar 

  31. Waley SG (1985) Kinetics of suicide substrates: practical procedures for determining parameters. Biochem J 227:843–849

    CAS  PubMed  Google Scholar 

  32. Mayhew BS, Jones DR, Hall SD (2000) An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab Dispos 28:1031–1037

    CAS  PubMed  Google Scholar 

  33. Polasek TM, Miners JO (2008) Time-dependent inhibition of human drug metabolizing cytochromes P450 by tricyclic antidepressants. Br J Clin Pharmacol 65(1):87–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jones DR, Gorski JC, Hamman MA, Mayhew BS, Rider S, Hall SD (1999) Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 290(3):1116–1125

    CAS  PubMed  Google Scholar 

  35. McConn DJ II, Lin YS, Allen K, Kunze KL, Thummel KE (2004) Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab Dispos 32(10):1083–1091

    CAS  PubMed  Google Scholar 

  36. Zhang X, Jones DR, Hall SD (2009) Prediction of the effect of erythromycin, diltiazem, and their metabolites, alone and in combination, on CYP3A4 inhibition. Drug Metab Dispos 37(1):150–160

    Article  CAS  PubMed  Google Scholar 

  37. Ortiz de Montellano PR (ed) (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer, New York

    Google Scholar 

  38. Venkatakrishnan K, Obach RS (2007) Drug-drug interactions via mechanism-based cytochrome P450 inactivation: points to consider for risk assessment from in vitro data and clinical pharmacologic evaluation. Curr Drug Metab 8(5):449–462

    Article  CAS  PubMed  Google Scholar 

  39. Jeffery EH, Mannering GJ (1983) Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats. Mol Pharmacol 23(3):748–757

    CAS  PubMed  Google Scholar 

  40. Lindeke B, Paulsen-Sorman U, Hallstrom G, Khuthier AH, Cho AK, Kammerer RC (1982) Cytochrome P-455-nm complex formation in the metabolism of phenylalkylamines. VI. Structure–activity relationships in metabolic intermediary complex formation with a series of alpha-substituted 2-phenylethylamines and corresponding N-hydroxylamines. Drug Metab Dispos 10(6):700–705

    CAS  PubMed  Google Scholar 

  41. Hanson KL, VandenBrink BM, Babu KN, Allen KE, Nelson WL, Kunze KL (2010) Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem. Drug Metab Dispos 38(6):963–972. doi:10.1124/dmd.110.032391

    Article  CAS  PubMed  Google Scholar 

  42. VandenBrink BM, Isoherranen N (2010) The role of metabolites in predicting drug-drug interactions: focus on irreversible cytochrome P450 inhibition. Curr Opin Drug Discov Devel 13(1):66–77

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Peter R, Bocker R, Beaune PH, Iwasaki M, Guengerich FP, Yang CS (1990) Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450IIE1. Chem Res Toxicol 3(6):566–573

    Article  CAS  PubMed  Google Scholar 

  44. Wynalda MA, Hutzler JM, Koets MD, Podoll T, Wienkers LC (2003) In vitro metabolism of clindamycin in human liver and intestinal microsomes. Drug Metab Dispos 31(7):878–887. doi:10.1124/dmd.31.7.878

    Article  CAS  PubMed  Google Scholar 

  45. Gorski JC, Jones DR, Wrighton SA, Hall SD (1994) Characterization of dextromethorphan N-demethylation by human liver microsomes. Contribution of the cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 48(1):173–182

    Article  CAS  PubMed  Google Scholar 

  46. Wienkers LC, Wurden CJ, Storch E, Kunze KL, Rettie AE, Trager WF (1996) Formation of (R)-8-hydroxywarfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab Dispos 24(5):610–614

    CAS  PubMed  Google Scholar 

  47. Tuvesson H, Wienkers LC, Gunnarsson PO, Seidegard J, Persson R (2000) Identification of cytochrome P4503A as the major subfamily responsible for the metabolism of roquinimex in man. Xenobiotica 30(9):905–914

    Article  CAS  PubMed  Google Scholar 

  48. Wienkers LC, Steenwyk RC, Sanders PE, Pearson PG (1996) Biotransformation of tirilzad in human: 1. Cytochrome P450 3A-mediated hydroxylation of tirilzad mesylate in human liver microsomes. J Pharmacol Exp Ther 277(2):982–990

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wienkers, L.C., Rock, B. (2014). Multienzyme Kinetics and Sequential Metabolism. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics