Skip to main content

A Structural Model for the Mass Action Kinetic Analysis of P-gp Mediated Transport Through Confluent Cell Monolayers

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

The structural model for P-gp mediated transport across confluent cell monolayers uses the generally accepted mass action reactions for P-gp binding and efflux, together with the known structural parameters for P-gp (large substrate binding site accessible from the membrane) and the apical plasma membrane in which it resides (lipid bilayer partition coefficient of substrate and volume of apical plasma membrane allow estimation of substrate concentration at binding site). The model considers binding of substrate to P-gp from within the inner leaflet of the apical membrane, with an on rate constant, k 1 (M−1s−1), and off rate constant k r (s−1), as well as an efflux rate constant from P-gp into the apical chamber, k 2 (s−1). The model also explicitly estimates the active P-gp protein level, known as P-gp efflux active surface density T(0). For each new drug, fitting these parameters requires use of multiple initial drug concentrations and multiple time points at each concentration, until steady state is reached between P-gp-mediated efflux into the apical chamber and passive permeability from apical chamber back into the cytosol. Although this model optimally requires a larger than usual dataset for analysis, it does provide important mechanistic information through estimates of these on, off and efflux rate constants, as well as efflux active P-gp surface density. This more detailed description of efflux from polarized confluent cell monolayers has (1) provided insight into the unexpected relationship between P-gp IC50 and K i in this system, (2) highlighted the kinetic need for GF120918 inhibitable apical and basolateral uptake transporters for digoxin, and (3) provided possible explanations for the extreme lab-to-lab variability in P-gp IC50 values observed for inhibition of digoxin transport. This model can also be used to distinguish between efflux active P-gp and total apical plasma membrane P-gp, which may be important when P-gp is expressed in a microvillous membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heikkinen AT, Korjamo T, Mönkkönen J (2009) Modelling of drug disposition kinetics in in vitro intestinal absorption cell models. Basic Clin Pharmacol Toxicol 106:180–188

    Article  PubMed  Google Scholar 

  2. Zamek-Gliszczynski MJ, Lee CA, Poirier A et al (2013). Best practices in determination of transporter kinetic parameters and translational models for human transporter-mediated pharmacokinetics and drug interactions (in press)

    Google Scholar 

  3. Bentz J, Tran TT, Polli JW et al (2005) The steady-state Michaelis-Menten analysis of P-glycoprotein mediated transport through a confluent cell monolayer cannot predict the correct Michaelis constant Km. Pharm Res 22:1667–1677

    Article  CAS  PubMed  Google Scholar 

  4. Sun H, Pang KS (2008) Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study. Drug Metab Dispos 36:102–123

    Article  CAS  PubMed  Google Scholar 

  5. Marrink J-J, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  CAS  Google Scholar 

  6. Houston JB, Kenworthy KE, Galetin A (2007) Typical and atypical enzyme kinetics. In: Lee JS, Obach RS, Fisher MB (eds) Drug metabolizing enzymes: cytochrome P450 and other enzymes in drug discovery and development. Informa Healthcare, New York, pp 211–254

    Google Scholar 

  7. Korzekwa KR, Nagar S, Tucker J et al (2012) Models to predict unbound intracellular drug concentrations in the presence of transporters. Drug Metab Dispos 40:865–876

    Article  CAS  PubMed  Google Scholar 

  8. Nagar S, Korzekwa KR (2012) Commentary: nonspecific protein binding versus membrane partitioning: it is not just semantics. Drug Metab Dispos 40:1649–1652

    Article  CAS  PubMed  Google Scholar 

  9. Acharya P, Polli JW, Ayrton A et al (2008) Kinetic identification of membrane transporters that assist P-gp mediated transport of digoxin and loperamide through a confluent monolayer of MDCK-hMDR1 cells. Drug Metab Dispos 36:452–460

    Article  CAS  PubMed  Google Scholar 

  10. Tran TT, Mittal A, Aldinger T et al (2005) The elementary mass action rate constants of P-gp transport for a confluent monolayer of MDCK-hMDR1 cells. Biophys J 88:715–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lumen AA, Li L, Li J et al (2013) Transport inhibition of digoxin using several common P-gp expressing cell lines is not necessarily reporting only on inhibitor binding to P-gp. PLoS One 8(8):e69394

    Article  PubMed Central  PubMed  Google Scholar 

  12. Agnani D, Acharya P, Martinez E et al (2011) Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCKII confluent cell monolayer using a particle swarm algorithm. PLoS One 6:e25086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Acharya P, Tran TT, Polli JW et al (2006) P-glycoprotein (P-gp) expressed in a confluent monolayer of hMDR1-MDCKII cells has more than one efflux pathway with cooperative binding sites. Biochemistry 45:15505–15519

    Article  CAS  PubMed  Google Scholar 

  14. Loo TW, Clarke DM (2005) Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol 206:173–185

    Article  CAS  PubMed  Google Scholar 

  15. Lugo MR, Sharom FJ (2005) Interaction of LDS-751 and rhodamine 123 with P-glycoprotein: evidence for simultaneous binding of both drugs. Biochemistry 44:14020–14029

    Article  CAS  PubMed  Google Scholar 

  16. Evers R, Kool M, Smith AJ et al (2000) Inhibitory effect of the reversal agents V-104, GF120918 and pluronic L61 on MDR1 P-gp-, MRP1- and MRP2-mediated transport. Br J Cancer 83:366–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Tran TT, Mittal A, Gales T et al (2004) An exact kinetic analysis of passive transport across a polarized confluent MDCK cell monolayer modeled as a single barrier. J Pharm Sci 93:2108–2123

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Agarwal S, Shaik NM et al (2009) P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther 330:956–963

    Article  CAS  PubMed  Google Scholar 

  19. Taub ME, Mease K, Sane RS et al (2011) Digoxin is not a substrate for organic anion-transporting polypeptide transporters OATP1A2, OATP1B1, OATP1B3, and OATP2B1 but is a substrate for a sodium-dependent transporter expressed in HEK293 cells. Drug Metab Dispos 39:2093–2102

    Article  CAS  PubMed  Google Scholar 

  20. Abreu MS, Estronca LM, Moreno MJ et al (2003) Binding of a fluorescent lipid amphiphile to albumin and its transfer to lipid bilayer membranes. Biophys J 84:386–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Senior AE, Sashi N, Weber J (2000) Rate acceleration of ATP hydrolysis by F1Fo-ATP synthase. J Exp Biol 203:35–40

    CAS  PubMed  Google Scholar 

  22. Lumen AA, Acharya P, Polli JW et al (2010) If the KI is defined by the free energy of binding to P-glycoprotein, which kinetic parameters define the IC50 for the Madin-Darby canine kidney II cell line overexpressing human multidrug resistance 1 confluent cell monolayer? Drug Metab Dispos 38:260–269

    Article  CAS  PubMed  Google Scholar 

  23. Tang F, Horie K, Borchardt RT (2002) Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res 19:765–772

    Article  CAS  PubMed  Google Scholar 

  24. Owen SC, Doak AK, Wassam P et al (2012) Colloidal aggregation affects the efficacy of anticancer drugs in cell culture. ACS Chem Biol 7:1429–1435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  26. Giacomini KM, Huang SM, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  CAS  PubMed  Google Scholar 

  27. Bentz J, O’Connor M, Lee C et al (2013) Variability in P-glycoprotein inhibitory potency (IC50) using various in vitro experimental systems: implications for universal digoxin DDI risk assessment decision criteria. Drug Metab Dispos 41(7):1347–1366

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bentz, J., Ellens, H. (2014). A Structural Model for the Mass Action Kinetic Analysis of P-gp Mediated Transport Through Confluent Cell Monolayers. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics