Skip to main content

Guanine-Tethered Antisense Oligonucleotides as Synthetic Riboregulators

  • Protocol
  • First Online:
Artificial Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1111))

Abstract

Regulation of gene expression by short oligonucleotides (antisense oligonucleotides), which can modulate RNA structures and inhibit subsequent associations with the translation machinery, is a potential approach for gene therapy. This chapter describes an alternative antisense strategy using guanine-tethered antisense oligonucleotides (G-ASs) to introduce a DNA–RNA heteroquadruplex structure at a designated sequence on RNA targets. The feasibility of using G-ASs to modulate RNA conformation may allow control of RNA function by inducing biologically important quadruplex structures. This approach to manipulate quadruplex structures using G-ASs may expand the strategies for regulating RNA structures and the functions of short oligonucleotide riboregulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  CAS  PubMed  Google Scholar 

  2. Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8:776–790

    Article  CAS  PubMed  Google Scholar 

  3. Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463

    Article  CAS  PubMed  Google Scholar 

  4. Link KH, Breaker RR (2009) Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther 16:1189–1201

    Article  CAS  PubMed  Google Scholar 

  5. Burge S, Parkinson GN, Hazel P et al (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lane AN, Chaires JB, Gray RD et al (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36:5482–5515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kumari S, Bugaut A, Huppert JL et al (2007) An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3:218–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Arora A, Dutkiewicz M, Scaria V et al (2008) Inhibition of translation in living eukaryotic cells by an RNA G-quadruplex motif. RNA 14:1–7

    Article  Google Scholar 

  9. Stein CA, Cheng YC (1993) Antisense oligonucleotides as therapeutic agents—is the bullet really magical? Science 261:1004–1012

    Article  CAS  PubMed  Google Scholar 

  10. Eckstein F (2007) The versatility of oligonucleotides as potential therapeutics. Expert Opin Biol Ther 7:1021–1034

    Article  CAS  PubMed  Google Scholar 

  11. Hagihara M, Yamauchi L, Seo A et al (2010) Antisense-induced Guanine Quadruplexes inhibit reverse transcription by HIV-1 reverse transcriptase. J Am Chem Soc 132:11171–11178

    Article  CAS  PubMed  Google Scholar 

  12. Hagihara M, Yoneda K, Yabuuchi H et al (2010) A reverse transcriptase stop assay revealed diverse quadruplex formations in UTRs in mRNA. Bioorg Med Chem Lett 20:2350–2353

    Article  CAS  PubMed  Google Scholar 

  13. Maurizot JC (2000) Circular dichroism of nucleic acids: nonclassical conformations and modified oligonucleotides. In: Berova N, Nakanishi K, Woody RW (eds) Circular dichroism: principles and applications, 2nd edn. Wiley-VCH, New York, pp 719–739

    Google Scholar 

  14. Porumb H, Monnot M, Fermandjian S (2002) Circular dichroism signatures of features simultaneously present in structured guanine-rich oligonucleotides: a combined spectroscopic and electrophoretic approach. Electrophoresis 23:1013–1020

    Article  CAS  PubMed  Google Scholar 

  15. Sun XG, Cao EH, He YJ et al (1999) Spectroscopic comparison of different DNA structures formed by oligonucleotides. J Biomol Struct Dyn 16:863–872

    Article  CAS  PubMed  Google Scholar 

  16. Mergny JL, Phan AT, Lacroix L (1998) Following G-quartet formation by UV-spectroscopy. FEBS Lett 435:74–78

    Article  CAS  PubMed  Google Scholar 

  17. Mergny JL, Lacroix L (2009) UV melting of G-Quadruplexes. In: Egli M, Herdewijn P, Matusda A, Yogesh S (eds) Curr Protoc Nucleic Acid Chem, Wiley-VCH, New York, Chapter 17: Unit 17.1

    Google Scholar 

  18. Xiao Y, Pavlov V, Niazov T et al (2004) Catalytic beacons for the detection of DNA and telomerase activity. J Am Chem Soc 126:7430–7431

    Article  CAS  PubMed  Google Scholar 

  19. Deng M, Zhang D, Zhou Y et al (2008) Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. J Am Chem Soc 130:13095–13102

    Article  CAS  PubMed  Google Scholar 

  20. De Cian A, Guittat L, Kaiser M et al (2007) Fluorescence-based melting assays for studying quadruplex ligands. Methods 42:183–195

    Article  PubMed  Google Scholar 

  21. Fukada H, Takahashi K (1998) Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins 33:159–166

    Article  CAS  PubMed  Google Scholar 

  22. Steely HT Jr, Gray DM, Ratliff RL (1986) CD of homopolymer DNA-RNA hybrid duplexes and triplexes containing A-T or A-U base pairs. Nucleic Acids Res 14:10071–10090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jin R, Gaffney BL, Wang C et al (1992) Thermodynamics and structure of a DNA tetraplex: a spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T). Proc Natl Acad Sci U S A 89:8832–8836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Benz A, Hartig JS (2008) Redesigned tetrads with altered hydrogen bonding patterns enable programming of quadruplex topologies. Chem Commun (Camb) 34:4010–4012

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the Ichiro Kanehara Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hagihara, M. (2014). Guanine-Tethered Antisense Oligonucleotides as Synthetic Riboregulators. In: Ogawa, A. (eds) Artificial Riboswitches. Methods in Molecular Biology, vol 1111. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-755-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-755-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-754-9

  • Online ISBN: 978-1-62703-755-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics