Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer

  • Choi-Fong Cho
  • Sourabh Shukla
  • Emily J. Simpson
  • Nicole F. Steinmetz
  • Leonard G. Luyt
  • John D. Lewis
Part of the Methods in Molecular Biology book series (MIMB, volume 1108)

Abstract

Viral nanoparticles (VNPs) are a novel class of bionanomaterials that harness the natural biocompatibility of viruses for the development of therapeutics, vaccines, and imaging tools. The plant virus, cowpea mosaic virus (CPMV), has been successfully engineered to create novel cancer-targeted imaging agents by incorporating fluorescent dyes, polyethylene glycol (PEG) polymers, and targeting moieties. Using straightforward conjugation strategies, VNPs with high selectivity for cancer-specific molecular targets can be synthesized for in vivo imaging of tumors. Here we describe the synthesis and purification of CPMV-based VNPs, the functionalization of these VNPs using click chemistry, and their use for imaging xenograft tumors in animal models. VNPs decorated with fluorescent dyes, PEG, and targeting ligands can be synthesized in one day, and imaging studies can be performed over hours, days, or weeks, depending on the application.

Key words

Cowpea mosaic virus (CPMV) Bionanomaterials CPMV-based viral nanoparticles Molecular imaging agents Chemical conjugation Click chemistry Tumor-homing nanoparticles Peptide-based affinity probes 

References

  1. 1.
    Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12:354–360CrossRefGoogle Scholar
  2. 2.
    Aina OH, Liu R, Sutcliffe JL, Marik J, Pan C-X, Lam KS (2007) From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 4:631–651CrossRefGoogle Scholar
  3. 3.
    Cho CF, Ablack A, Leong HS, Zijlstra A, Lewis J (2011) Evaluation of nanoparticle uptake in tumors in real time using intravital imaging. J Vis Exp 52:e2808Google Scholar
  4. 4.
    Cho CF, Amadei GA, Breadner D, Luyt LG, Lewis J (2012) The discovery of novel integrin ligands from combinatorial libraries using a multiplex “beads on a bead” approach. Nano Lett 12:5957–65CrossRefGoogle Scholar
  5. 5.
    Steinmetz NF, Cho CF, Ablack A, Lewis JD, Manchester M (2011) Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine (Lond) 6:351–364CrossRefGoogle Scholar
  6. 6.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20CrossRefGoogle Scholar
  7. 7.
    Leong HS, Steinmetz NF, Ablack A, Destito G, Zijlstra A, Stuhlmann H, Manchester M, Lewis JD (2010) Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc 5:1406–1417CrossRefGoogle Scholar
  8. 8.
    Steinmetz NF, Ablack AL, Hickey JL, Ablack J, Manocha B, Mymryk JS, Luyt LG, Lewis JD (2011) Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing peptide receptors. Small 7:1664–1672CrossRefGoogle Scholar
  9. 9.
    Chatterji A, Ochoa WF, Paine M, Ratna BR, Johnson JE, Lin T (2004) New addresses on an addressable virus nanoblock; uniquely reactive Lys residues on cowpea mosaic virus. Chem Biol 11:855–863CrossRefGoogle Scholar
  10. 10.
    Brunel FM, Lewis JD, Destito G, Steinmetz NF, Manchester M, Stuhlmann H, Dawson PE (2010) Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett 10:1093–1097CrossRefGoogle Scholar
  11. 11.
    Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, Finn MG, Manchester M (2007) Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 120:41–50CrossRefGoogle Scholar
  12. 12.
    Medintz IL, Sapsford KE, Konnert JH, Chatterji A, Lin T, Johnson JE, Mattoussi H (2005) Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir 21(12):5501–5510CrossRefGoogle Scholar
  13. 13.
    Sapsford KE, Soto CM, Blum AS, Chatterji A, Lin T, Johnson JE, Ligler FS, Ratna BR (2006) A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: application as an immunoassay tracer. Biosens Bioelectron 21(8):1668–1673CrossRefGoogle Scholar
  14. 14.
    Destito G, Yeh R, Rae CS, Finn MG, Manchester M (2007) Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 14:1152–1162CrossRefGoogle Scholar
  15. 15.
    Steinmetz NF, Manchester M (2009) PEGylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules 10: 784–792CrossRefGoogle Scholar
  16. 16.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021CrossRefGoogle Scholar
  17. 17.
    Li ZJ, Cho CH (2012) Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J Transl Med 10(Suppl 1):1CrossRefGoogle Scholar
  18. 18.
    Neveu C, Lefranc B, Tasseau O, Do-Rego JC, Bourmaud A, Chan P, Bauchat P, Le Marec O, Chuquet J, Guilhaudis L, Boutin JA, Segalas-Milazzo I, Costentin J, Vaudry H, Baudy-Floc'h M, Vaudry D, Leprince J (2012) Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-beta3-pseudopeptide agonist. J Med Chem 55(17):7516–7524CrossRefGoogle Scholar
  19. 19.
    Auzzas L, Zanardi F, Battistini L, Burreddu P, Carta P, Rassu G, Curti C, Casiraghi G (2010) Targeting alphavbeta3 integrin: design and applications of mono- and multifunctional RGD-based peptides and semipeptides. Curr Med Chem 17(13):1255–1299CrossRefGoogle Scholar
  20. 20.
    Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249(4967):404–406CrossRefGoogle Scholar
  21. 21.
    Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84CrossRefGoogle Scholar
  22. 22.
    Cretu A, Fotos JS, Little BW, Galileo DS (2005) Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model. Clin Exp Metastasis 22(3):225–236CrossRefGoogle Scholar
  23. 23.
    Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13(3):221–234CrossRefGoogle Scholar
  24. 24.
    Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, New York, p 288Google Scholar
  25. 25.
    Leong HS, Chambers AF, Lewis JD (2012) Assessing cancer cell migration and metastatic growth in vivo in the chick embryo using fluorescence intravital imaging. Methods Mol Biol 872:1–14CrossRefGoogle Scholar
  26. 26.
    Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Choi-Fong Cho
    • 1
  • Sourabh Shukla
    • 2
    • 3
    • 4
  • Emily J. Simpson
    • 5
    • 6
    • 7
  • Nicole F. Steinmetz
    • 2
    • 3
    • 4
  • Leonard G. Luyt
    • 5
    • 6
    • 7
  • John D. Lewis
    • 1
  1. 1.Translational Prostate Cancer Research GroupUniversity of AlbertaEdmontonCanada
  2. 2.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  3. 3.Department of RadiologyCase Western Reserve UniversityClevelandUSA
  4. 4.Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA
  5. 5.Department of ChemistryThe University of Western OntarioLondonCanada
  6. 6.Department of OncologyThe University of Western OntarioLondonCanada
  7. 7.Department of Medical ImagingThe University of Western OntarioLondonCanada

Personalised recommendations