Abstract
Inferring microRNA (miRNA) functions and activities has been extremely important to understand their system-level roles and the mechanisms behind the cellular behaviors of their target genes. This chapter first details methodologies necessary for prediction of function and activity. It then introduces the computational methods available for investigation of sequence and experimental data and for analysis of the information flow mediated through miRNAs.
Keywords
- Regulatory networks
- Transcriptional modules
- Biclustering
- Bipartite graphs
- Multiway analysis
This is a preview of subscription content, access via your institution.
Buying options



References
Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome- wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868
Ben-Dor A, Shamir R, Yakhini Z (1999) Clustering gene expression patterns. J Comput Biol 6:281–297
Tompa M, Li N, Bailey TL et al (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23:137–144
Bartel DP (2004) MicroRNAs, genomics, biogenesis, mechanism, and function. Cell 116:281–297
Mendes ND, Freitas AT, Sagot MF (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37:2419–2433
Saito T, Saetrom P (2010) MicroRNAs—targeting and target prediction. N Biotechnol 27:243–249
Alexiou P, Maragkakis M, Papadopoulos GL et al (2009) Lost in translation, an assessment and perspective for computational microRNA target identification. Bioinformatics 25:3049–3055
Barbato C, Arisi I, Frizzo ME et al (2009) Computational challenges in miRNATarget predictions, to be or not to be a true target? J Biomed Biotechnol 2009:803069
Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500
Wang J, Lu M, Qiu C et al (2010) TransmiR, a transcription factor–microRNA regulation database. Nucleic Acids Res 38:D119–D122
Heckerman D (1998) Tutorial on learning with Bayesian networks. In: Jordan M (ed) Learning in graphical models. Adaptive computation and machine learning. MIT Press, Massachusetts, pp 301–354
Segal E, Shapira M, Regev A et al (2005) Learning module networks. J Mach Learn Res 6:557–588
Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767
Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18:510–525
El Gazzar M, McCall CE (2011) MicroRNAs regulatory networks in myeloid lineage development and differentiation, regulators of the regulators. Immunol Cell Biol. doi:10.1038/icb.2011.74
Stingo FC, Chen YA, Vannucci M et al (2010) A Bayesian graphical modeling approach to microRNA regulatory network inference. Ann Appl Stat 4:2024–2048
Tang J, Fang J (2009) MicroRNA regulatory network in human colorectal cancer. Mini Rev Med Chem 9:921–926
Liu B, Li J, Tsykin A et al (2009) Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics 10:408
Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: MicroRNAs can up-regulate translation. Science 318:1931–1934
Bonnet E, Michoel T, Van de Peer Y (2010) Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data. Bioinformatics 26:i638–i644
Segal E, Shapira M, Regev A et al (2003) Module networks, discovering regulatory modules and their condition specific regulators from gene expression data. Nat Genet 34:166–176
Michoel T, Maere S, Bonnet E et al (2007) Validating module networks learning algorithms using simulated data. BMC Bioinformatics 8:S5
Yoon S, Micheli G (2005) Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics 21:i93–i100
Joung JG, Hwang KB, Nam JW et al (2007) Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics 23:1141–1147
Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838
Liu B, Li J, Tsykin A (2009) Discovery of functional miRNA-mRNA regulatory modules with computational methods. J Biomed Inform 42:685–691
Peng X, Li Y, Walters KA et al (2009) Computational identification of hepatitis c virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics 10:373
Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis, a survey. IEEE/ACM Trans Comput Biol Bioinform 1:24–45
Cheng Y, Church GM (2000) Biclustering of expression data. Proc 8th int conf intel syst mol biol, pp 93–103
Getz G, Levine E, Domany E (2000) Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci U S A 97:12079–12084
Yang J, Wang W, Wang H (2003) Enhanced biclustering on expression data. Proc 3rd IEEE conf bioinform bioeng, pp 321–327
Tang C, Zhang L, Zhang I et al (2001) Interrelated two-way clustering, an unsupervised approach for gene expression data analysis. Proc 2nd IEEE int sym bioinform bioeng, pp 41–48, 2001
Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67:123–129
Caldas J, Kaski S (2011) Hierarchical generative biclustering for microRNA expression analysis. J Comput Biol 18:251–261
Nam S, Li M, Choi K et al (2009) MicroRNA and mRNA integrated analysis (MMIA), a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 37:W356–W362
Ulitsky I, Laurent LC, Shamir R (2010) Towards computational prediction of microRNA function and activity. Nucleic Acids Res. doi:10.1093/nar/gkq570
Sales G, Coppe A, Bisognin A et al (2010) MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res 38:W352–W359
Wu X, Watson M (2009) CORNA, testing gene lists for regulation by microRNAs. Bioinformatics 25:832–833
Huopaniemi I, Suvitaival T, Nikkilä J et al (2010) Multivariate multi-way analysis of multi-source data. Bioinformatics 26:i391–i398
Acknowledgement
This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the Project 110E160.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this protocol
Cite this protocol
Oğul, H. (2014). Computational Prediction of MicroRNA Function and Activity. In: Yousef, M., Allmer, J. (eds) miRNomics: MicroRNA Biology and Computational Analysis. Methods in Molecular Biology, vol 1107. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-748-8_15
Download citation
DOI: https://doi.org/10.1007/978-1-62703-748-8_15
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-62703-747-1
Online ISBN: 978-1-62703-748-8
eBook Packages: Springer Protocols