Skip to main content

Gene Reporter Assay to Validate MicroRNA Targets in Drosophila S2 Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1107))

Abstract

Bioinformatics programs have helped tremendously in identifying the targets of microRNAs, which are small noncoding RNAs that regulate gene expression posttranscriptionally. However, the partial complementarity between miRNAs and their targets hinders the accuracy of target prediction, necessitating the use of experimental validation procedures. Here, we describe a gene reporter assay typically used in our lab to validate putative miRNA–mRNA interactions in Drosophila S2 cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed  CAS  Google Scholar 

  2. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400

    Article  PubMed  CAS  Google Scholar 

  4. Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12:136–149

    Article  PubMed  CAS  Google Scholar 

  5. Yekta S, Tabin CJ, Bartel DP (2008) MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat Rev Genet 9:789–796

    Article  PubMed  CAS  Google Scholar 

  6. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    Article  PubMed  CAS  Google Scholar 

  7. Berezikov E, Guryev V, van de Belt J et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  PubMed  CAS  Google Scholar 

  8. Lai EC, Tomancak P, Williams RW et al (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4:R42

    Article  PubMed  Google Scholar 

  9. Lim LP, Glasner ME, Yekta S et al (2003) Vertebrate microRNA genes. Science 299:1540

    Article  PubMed  CAS  Google Scholar 

  10. Bartel DP (2009) microRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  11. John B, Enright AJ, Aracin A et al (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  PubMed  Google Scholar 

  12. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  PubMed  CAS  Google Scholar 

  13. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  14. Orom UA, Lund AH (2009) Experimental identification of microRNA targets. Gene 451:1–5

    Article  PubMed  Google Scholar 

  15. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853

    Article  PubMed  CAS  Google Scholar 

  16. Karginov FV, Conaco C, Xuan Z et al (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104:19291–19296

    Article  PubMed  CAS  Google Scholar 

  17. Chi SW, Zang JB, Mele A et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460: 479–486

    PubMed  CAS  Google Scholar 

  18. Bracken CP, Gregory PA, Kolesnikoff N et al (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854

    Article  PubMed  CAS  Google Scholar 

  19. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  20. Gloor GB, Preston CR, Johnson-Schlitz DM et al (1993) Type I repressors of P element mobility. Genetics 135:81–95

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technical Research Council of Turkey (104T144 to BA). We also thank the IZTECH Center for Biotechnology for their help.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Akgül, B., Göktaş, Ç. (2014). Gene Reporter Assay to Validate MicroRNA Targets in Drosophila S2 Cells. In: Yousef, M., Allmer, J. (eds) miRNomics: MicroRNA Biology and Computational Analysis. Methods in Molecular Biology, vol 1107. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-748-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-748-8_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-747-1

  • Online ISBN: 978-1-62703-748-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics