Skip to main content

Mutation Screening of the TP53 Gene by Temporal Temperature Gel Electrophoresis (TTGE)

  • Protocol
  • First Online:
Book cover Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1105))

  • 3935 Accesses

Abstract

A protocol for detection of mutations in the TP53 gene using temporal temperature gradient electrophoresis (TTGE) is described. TTGE is a mutation detection technique that separates DNA fragments differing by single base pairs according to their melting properties in a denaturing gel. It is based on constant denaturing conditions in the gel combined with a temperature gradient during the electrophoretic run. This method combines some of the advantages of the related techniques, denaturing gradient gel electrophoresis and constant denaturant gel electrophoresis, and eliminates some of the problems. The result is a rapid and sensitive screening technique which is robust and easily set up in smaller laboratory environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernandez-Boussard T, Montesano R, Hainaut P (1999) Sources of bias in the detection and reporting of p53 mutations in human cancer: analysis of the IARC p53 mutation database. Genet Anal 14:229–233

    Article  CAS  PubMed  Google Scholar 

  2. Olivier M, Eeles R, Hollstein M et al (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19:607–614

    Article  CAS  PubMed  Google Scholar 

  3. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sørlie T, Hovig E, Smith-Sorensen B, Montesano R, Harris CC (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22:3551–3555

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Hussain SP, Hofseth LJ, Harris CC (2001) Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessment. Lung Cancer 34(suppl 2):S7–S15

    Article  PubMed  Google Scholar 

  6. Martin AC, Facchiano AM, Cuff AL et al (2002) Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Hum Mutat 19:149–164

    Article  CAS  PubMed  Google Scholar 

  7. Soussi T, Beroud C (2002) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233–240

    Article  Google Scholar 

  8. Tyner SD, Venkatachalam S, Choi J et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53

    Article  CAS  PubMed  Google Scholar 

  9. Aas T, Børresen A-L, Geisler S et al (1996) Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2:811–814

    Article  CAS  PubMed  Google Scholar 

  10. Børresen-Dale A-L, Lothe RA, Meling GI, Hainaut P, Rognum TO, Skovlund E (1998) TP53 and long-term prognosis in colorectal cancer: mutations in the L3 zinc-binding domain predict poor survival. Clin Cancer Res 4:203–210

    PubMed  Google Scholar 

  11. Geisler S, Lønning PE, Aas T et al (2001) Influence of TP53 gene alterations and c-erbB2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res 61:2505–2512

    CAS  PubMed  Google Scholar 

  12. Wallace-Brodeur RR, Lowe SW (1999) Clinical implications of p53 mutations. Cell Mol Life Sci 55:64–75

    Article  CAS  PubMed  Google Scholar 

  13. Wattel E, Preudhomme C, Hecquet B et al (1994) p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84:3148–3157

    CAS  PubMed  Google Scholar 

  14. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 86:2766–2770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879

    Article  CAS  PubMed  Google Scholar 

  16. Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A 80:1579–1583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Børresen A-L, Hovig E, Smith-Sorensen B et al (1991) Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc Natl Acad Sci U S A 88: 8405–8409

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hovig E, Smith-Sorensen B, Brogger A, Børresen A-L (1991) Constant denaturant gel electrophoresis, a modification of denaturing gradient gel electrophoresis, in mutation detection. Mutat Res 262:63–71 [Published erratum: Mutat Res 263, 61]

    Article  CAS  PubMed  Google Scholar 

  19. Bjorheim J, Gaudernack G, Ekstrom PO (2001) Mutation analysis of TP53 exons 5–8 by automated constant denaturant capillary electrophoresis. Tumour Biol 22:323–327

    Article  CAS  PubMed  Google Scholar 

  20. Khrapko K, Hanekamp JS, Thilly WG, Belenkii A, Foret F, Karger BL (1994) Constant denaturant capillary electrophoresis (CDCE): a high resolution approach to mutational analysis. Nucleic Acids Res 22:364–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sarkar G, Yoon HS, Sommer SS (1992) Dideoxy fingerprinting (ddE): a rapid and efficient screen for the presence of mutations. Genomics 13:441–443

    Article  CAS  PubMed  Google Scholar 

  22. Gelfi C, Cremonesi L, Ferrari M, Righetti PG (1996) Temperature-programmed capillary electrophoresis for detection of DNA point mutations. Biotechniques 21:926–928, 930, 932

    CAS  PubMed  Google Scholar 

  23. Riesner D, Steger G, Zimmat R et al (1989) Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10:377–389

    Article  CAS  PubMed  Google Scholar 

  24. Børresen-Dale A-L, Lystad S, Langeroed A (1997) Temporal temperature gradient electrophoresis on the DCode system. Biorad Bull 2133:8

    Google Scholar 

  25. Zoller P, Redila-Flores T, Chu D, Patel A (1998) Temporal temperature gradient electrophoresis: a powerful technique to screen mutations. Biomedical Products 9. (http://www.biocompare.com/Application-Notes/42665-Temporal-Temperature-Gradient-Electrophoresis-A-Powerful-Technique-To-Screen-Mutations/)

  26. Lerman LS, Silverstein K (1987) Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol 155:482–501

    Article  CAS  PubMed  Google Scholar 

  27. Børresen A-L (1996) Constant denaturant gel electrophoresis (CDGE) in mutation screening. In: Pfeifer GP (ed) Technologies for detection of DNA damage and mutation. Plenum, New York, pp 267–279

    Chapter  Google Scholar 

  28. Kraggerud SM, Szymanska J, Abeler VM et al (2000) DNA copy number changes in malignant ovarian germ cell tumors. Cancer Res 60: 3025–3030

    CAS  PubMed  Google Scholar 

  29. Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A 86: 232–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Guldberg P, Nedergaard T, Nielsen HJ, Olsen AC, Ahrenkiel V, Zeuthen J (1997) Single-step DGGE-based mutation scanning of the p53 gene: application to genetic diagnosis of colorectal cancer. Hum Mutat 9:348–355

    Article  CAS  PubMed  Google Scholar 

  31. Steger G (1994) Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. Nucleic Acids Res 22:2760–2768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Therese Sørlie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Humana Press

About this protocol

Cite this protocol

Sørlie, T., Johnsen, H., Vu, P., Lind, G.E., Lothe, R., Børresen-Dale, AL. (2014). Mutation Screening of the TP53 Gene by Temporal Temperature Gel Electrophoresis (TTGE). In: Keohavong, P., Grant, S. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 1105. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-739-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-739-6_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-738-9

  • Online ISBN: 978-1-62703-739-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics