Skip to main content

Efficient Processes for Protein Expression Using Recombinant Baculovirus Particles

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1104))

Abstract

The use of baculoviruses has become a standard approach in many labs for recombinant protein production. In addition to giving a broad and practical overview of the technology, this chapter focuses in particular on two recent developments in the field and how these can be efficiently exploited for protein production: the use of baculovirus-infected insect cells and in vivo recombination-mediated production of recombinant viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erdmann D, Zimmermann C, Fontana P et al (2010) Simultaneous protein expression and modification: an efficient approach for production of unphosphorylated and biotinylated receptor tyrosine kinases by triple infection in the baculovirus expression system. J Biomol Tech 21:9–17

    Google Scholar 

  2. Trowitzsch S, Bieniossek C, Nie Y et al (2010) New baculovirus expression tools for recombinant protein complex production. J Struct Biol 172:45–54

    Article  CAS  Google Scholar 

  3. Trometer C, Falson P (2010) Mammalian membrane protein expression in baculovirus-infected insect cells. Methods Mol Biol 601: 105–117

    CAS  Google Scholar 

  4. Mena JA, Kamen AA (2011) Insect cell technology is a versatile and robust vaccine manufacturing platform. [Review]. Expert Rev Vaccines 10:1063–1081

    Article  CAS  Google Scholar 

  5. Jarvis DL, Garcia A Jr (1994) Long-term stability of baculoviruses stored under various conditions. Biotechniques 16:508–513

    CAS  Google Scholar 

  6. Pijlman GP, van Schijndel JE, Vlak JM (2003) Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J Gen Virol 84:2669–2678

    Article  CAS  Google Scholar 

  7. Cohen JI, Krogmann T, Ross JP et al (2005) Varicella-zoster virus ORF4 latency-associated protein is important for establishment of latency. J Virol 79:6969–6975

    Article  CAS  Google Scholar 

  8. Geisse S (2007) Insect cell cultivation and generation of recombinant baculovirus particles for recombinant protein production. In: Pörtner R (ed) Animal cell biotechnology: methods and protocols. Springer, Totowa, pp 489–507

    Chapter  Google Scholar 

  9. Wickham TJ, Nemerow GR (1993) Optimization of growth methods and recombinant protein production in BTI-Tn-5B1-4 insect cells using the baculovirus expression system. Biotechnol Prog 9:25–30

    Article  CAS  Google Scholar 

  10. Jorio H, Tran R, Kamen A (2006) Stability of serum-free and purified baculovirus stocks under various storage conditions. Biotechnol Prog 22:319–325

    Article  CAS  Google Scholar 

  11. Wasilko DJ, Lee SE (2006) Titerless infected-cells preservation and scale-up. BioProcess J 5:29–32

    Google Scholar 

  12. Wasilko DJ, Lee SE, Stutzman-Engwall KJ et al (2009) The titerless infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from insect cells infected with recombinant baculovirus. Protein Expr Purif 65:122–132

    Article  CAS  Google Scholar 

  13. van Oers MM (2011) Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 107 Suppl:S3–S15

    Google Scholar 

  14. Hitchman RB, Locanto E, Possee RD et al (2011) Optimizing the baculovirus expression vector system. Methods 55:52–57

    Article  CAS  Google Scholar 

  15. Possee RD, Hitchman RB, Richards KS et al (2008) Generation of baculovirus vectors for the high-throughput production of proteins in insect cells. Biotechnol Bioeng 101: 1115–1122

    Article  CAS  Google Scholar 

  16. Zhao Y, Chapman DA, Jones IM (2003) Improving baculovirus recombination. Nucleic Acids Res 31:E6

    Article  Google Scholar 

  17. Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45

    Article  Google Scholar 

  18. Hitchman RB, Possee RD, King LA (2012) High-throughput baculovirus expression in insect cells. Methods Mol Biol 824:609–627

    CAS  Google Scholar 

  19. Hitchman RB, Siaterli EA, Nixon CP et al (2007) Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles. Biotechnol Bioeng 96:810–814

    Article  CAS  Google Scholar 

  20. Bahia D, Cheung R, Buchs M et al (2005) Optimisation of insect cell growth in deep-well blocks: development of a high-throughput insect cell expression screen. Protein Expr Purif 39:61–70

    Article  CAS  Google Scholar 

  21. Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45

    Article  Google Scholar 

  22. Schlaeppi JM, Henke M, Mahnke M et al (2006) A semi-automated large-scale process for the production of recombinant tagged proteins in the Baculovirus expression system. Protein Expr Purif 50:185–195

    Article  CAS  Google Scholar 

  23. Li TC, Scotti PD, Miyamura T et al (2007) Latent infection of a new alphanodavirus in an insect cell line. J Virol 81:10890–10896

    Article  CAS  Google Scholar 

  24. Scherer WF, Hurlbut HS (1967) Nodamura virus from Japan: a new and unusual arbovirus resistant to diethyl ether and chloroform. Am J Epidemiol 86:271–285

    CAS  Google Scholar 

  25. Garzon S, Strykowski H, Charpentier G (1990) Implication of mitochondria in the replication of Nodamura virus in larvae of the Lepidoptera, Galleria mellonella (L.) and in suckling mice. Arch Virol 113:165–176

    Article  CAS  Google Scholar 

  26. Appleton BA, Wu P, Maloney J et al (2007) Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO J 26: 4902–4912

    Article  CAS  Google Scholar 

  27. Fellouse FA, Li B, Compaan DM et al (2005) Molecular recognition by a binary code. J Mol Biol 348:1153–1162

    Article  CAS  Google Scholar 

  28. Patel D, Lahiji A, Patel S et al (2007) Monoclonal antibody cetuximab binds to and down-regulates constitutively activated epidermal growth factor receptor vIII on the cell surface. Anticancer Res 27:3355–3366

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cremer, H., Bechtold, I., Mahnke, M., Assenberg, R. (2014). Efficient Processes for Protein Expression Using Recombinant Baculovirus Particles. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 1104. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-733-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-733-4_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-732-7

  • Online ISBN: 978-1-62703-733-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics