Knockdown Strategies for the Study of Proprotein Convertases and Proliferation in Prostate Cancer Cells

  • François D’Anjou
  • Frédéric Couture
  • Roxane Desjardins
  • Robert Day
Part of the Methods in Molecular Biology book series (MIMB, volume 1103)


Gene silencing strategies targeting mRNA are suitable methods to validate the functions of specific genes. In this chapter, we sought to compare two knockdown strategies for the study of proprotein convertases and proliferation in prostate cancer cells. We used both SOFA-HDV ribozyme and lentiviral-mediated shRNA delivery system to reduce PACE4 mRNA levels and validate its implication in the proliferation of DU145 prostate cancer cells. The cellular effects of PACE4 knockdown were assessed (1) in vitro using two tetrazolium salts (MTT and XTT assays) and (2) in vivo using a tumor xenograft approach in immunodeficient mice (Nu/Nu). Our results confirm the unique role of the proprotein convertase PACE4 in prostate cancer cell proliferation while demonstrating advantages and disadvantages of each approach. Achieving target validation in an effective manner is critical, as further development using a drug development approach is highly laborious and requires enormous resources.

Key words

HDV-ribozyme shRNA Lentivirus MTT XTT Xenografts Proprotein convertases Prostate cancer 



This work is funded by grants from the Canadian Institutes of Health Research (CIHR) and the Ministère du Développement Économique de l’Innovation et de l’Exportation (MDEIE) to RD. RD is a member of the Centre de Recherche Clinique Etienne-Le Bel (Sherbrooke, QC, Canada). FC holds a Graduate Scholarship from the Fonds de la Recherche Santé Québec (FRSQ).


  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  2. 2.
    Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152PubMedCrossRefGoogle Scholar
  3. 3.
    Cespedes MV, Casanova I, Parreno M, Mangues R (2006) Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol 8:318–329PubMedCrossRefGoogle Scholar
  4. 4.
    D’Anjou F, Routhier S, Perreault JP, Latil A, Bonnel D, Fournier I, Salzet M, Day R (2011) Molecular validation of PACE4 as a target in prostate cancer. Transl Oncol 4:157–172PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Seidah NG, Prat A (2012) The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 11:367–383PubMedCrossRefGoogle Scholar
  6. 6.
    Seidah NG, Chretien M (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848:45–62PubMedCrossRefGoogle Scholar
  7. 7.
    Couture F, D’Anjou F, Day R (2011) On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. Biomol Concepts 2:421–438PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Becker GL, Lu Y, Hardes K, Strehlow B, Levesque C, Lindberg I, Sandvig K, Bakowsky U, Day R, Garten W, Steinmetzer T (2012) Highly potent inhibitors of the proprotein convertase furin as potential drugs for the treatment of infectious diseases. J Biol Chem 287(26):21992–22003PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Fugere M, Day R (2005) Cutting back on pro-protein convertases: the latest approaches to pharmacological inhibition. Trends Pharmacol Sci 26:294–301PubMedCrossRefGoogle Scholar
  10. 10.
    D’Anjou F, Bergeron LJ, Larbi NB, Fournier I, Salzet M, Perreault JP, Day R (2004) Silencing of SPC2 expression using an engineered delta ribozyme in the mouse betaTC-3 endocrine cell line. J Biol Chem 279:14232–14239PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gupta N, Fisker N, Asselin MC, Lindholm M, Rosenbohm C, Orum H, Elmen J, Seidah NG, Straarup EM (2010) A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 5:e10682PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Scamuffa N, Siegfried G, Bontemps Y, Ma L, Basak A, Cherel G, Calvo F, Seidah NG, Khatib AM (2008) Selective inhibition of proprotein convertases represses the metastatic potential of human colorectal tumor cells. J Clin Invest 118:352–363PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Yuasa K, Masuda T, Yoshikawa C, Nagahama M, Matsuda Y, Tsuji A (2009) Subtilisin-like proprotein convertase PACE4 is required for skeletal muscle differentiation. J Biochem 146:407–415PubMedCrossRefGoogle Scholar
  14. 14.
    Khatib AM, Siegfried G, Chretien M, Metrakos P, Seidah NG (2002) Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am J Pathol 160:1921–1935PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Bergeron LJ, Reymond C, Perreault JP (2005) Functional characterization of the SOFA delta ribozyme. RNA 11:1858–1868PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Bergeron LJ, Perreault JP (2005) Target-dependent on/off switch increases ribozyme fidelity. Nucleic Acids Res 33:1240–1248PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21:274–281PubMedCrossRefGoogle Scholar
  18. 18.
    Levesque MV, Perreault JP (2012) Target-induced SOFA-HDV ribozyme. Methods Mol Biol 848:369–384PubMedCrossRefGoogle Scholar
  19. 19.
    Levesque MV, Rouleau SG, Perreault JP (2011) Selection of the most potent specific on/off adaptor-hepatitis delta virus ribozymes for use in gene targeting. Nucleic Acid Ther 21:241–252PubMedCrossRefGoogle Scholar
  20. 20.
    Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier JK, Carpenter AE, Foo SY, Stewart SA, Stockwell BR, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Root DE (2006) A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124:1283–1298PubMedCrossRefGoogle Scholar
  21. 21.
    Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9:493–501PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875PubMedCrossRefGoogle Scholar
  23. 23.
    Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880PubMedCentralPubMedGoogle Scholar
  24. 24.
    Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL (1991) An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods 142:257–265PubMedCrossRefGoogle Scholar
  25. 25.
    Asif-Ullah M, Levesque M, Robichaud G, Perreault JP (2007) Development of ribozyme-based gene-inactivations; the example of the hepatitis delta virus ribozyme. Curr Gene Ther 7:205–216PubMedCrossRefGoogle Scholar
  26. 26.
    Akashi H, Matsumoto S, Taira K (2005) Gene discovery by ribozyme and siRNA libraries. Nat Rev Mol Cell Biol 6:413–422PubMedCrossRefGoogle Scholar
  27. 27.
    Paddison PJ (2008) RNA interference in mammalian cell systems. Curr Top Microbiol Immunol 320:1–19PubMedGoogle Scholar
  28. 28.
    Sliva K, Schnierle BS (2010) Selective gene silencing by viral delivery of short hairpin RNA. Virol J 7:248PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • François D’Anjou
    • 1
  • Frédéric Couture
    • 1
  • Roxane Desjardins
    • 1
  • Robert Day
    • 1
  1. 1.Département de chirurgie et service de urologie, Institut de pharmacologie de SherbrookeUniversité de SherbrookeSherbrookeCanada

Personalised recommendations