Skip to main content

Use of SHAPE to Select 2AP Substitution Sites for RNA–Ligand Interactions and Dynamics Studies

  • Protocol
  • First Online:
Therapeutic Applications of Ribozymes and Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1103))

Abstract

Most regulatory RNA molecules must adopt a precise secondary fold and tertiary structure to allow their function in cells. A number of experimental approaches, such as the 2-Aminopurine-Based RNA Folding Analysis (2ApFold), have therefore been developed to offer insights into the folding and folding dynamics of RNA. A crucial requirement for this method is the selection of proper 2AP labeling positions. In that regard, we recently discovered that Selective 2′-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) offers a reliable path to identify appropriate nucleotides for 2AP substitution on a target RNA. This chapter describes the straightforward procedure to select 2AP substitution sites in RNA molecules using SHAPE probing. The protocols detail the preparation of the target RNA by transcription, and the SHAPE steps including (1) probing of the RNA, (2) reverse transcription with a radiolabeled primer, (3) sequencing gel, and (4) analysis of the obtained band pattern.

This work was supported by a grant from the Austrian Science Foundation FWF (P21641, I317). Marie F. Soulière is the recipient of an EMBO long-term fellowship (ALTF 637–2010) from the European Molecular Biology Organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strobel SA, Cochrane JC (2007) RNA catalysis: ribozymes, ribosomes, and riboswitches. Curr Opin Chem Biol 11:636–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8:776–790

    Article  CAS  PubMed  Google Scholar 

  3. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  4. Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed 38:2326–2343

    Article  Google Scholar 

  5. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  CAS  PubMed  Google Scholar 

  6. Schwalbe H, Buck J, Furtig B, Noeske J, Wohnert J (2007) Structures of RNA switches: insight into molecular recognition and tertiary structure. Angew Chem Int Ed 46:1212–1219

    Article  CAS  Google Scholar 

  7. Haller A, Souliere MF, Micura R (2011) The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44:1339–1348

    Article  CAS  PubMed  Google Scholar 

  8. Haller A, Rieder U, Aigner M, Blanchard SC, Micura R (2011) Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7:393–400

    Article  CAS  PubMed  Google Scholar 

  9. Rieder U, Kreutz C, Micura R (2010) Folding of a transcriptionally acting preQ1 riboswitch. Proc Natl Acad Sci U S A 2107:10804–10809

    Article  Google Scholar 

  10. Rieder R, Lang K, Graber D, Micura R (2007) Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control. Chembiochem 8:896–902

    Article  CAS  PubMed  Google Scholar 

  11. Lang K, Rieder R, Micura R (2007) Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach. Nucleic Acids Res 35:5370–5378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jean JM, Hall KB (2001) 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking. Proc Natl Acad Sci U S A 98:37–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sinkeldam RW, Greco N, Tor Y (2010) Fluorescent analogs of biomolecular building blocks: design properties and applications. Chem Rev 110:2579–2619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Souliere MF, Haller A, Rieder R, Micura R (2011) A powerful approach for the selection of 2-aminopurine substitution sites to investigate RNA folding. J Am Chem Soc 133:16161–16167

    Article  CAS  PubMed  Google Scholar 

  15. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231

    Article  CAS  PubMed  Google Scholar 

  16. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616

    Article  CAS  PubMed  Google Scholar 

  17. Wilkinson KA, Vasa SM, Deigan KE, Mortimer SA, Giddings MC, Weeks KM (2009) Influence of nucleotide identity on ribose 29-hydroxylreactivity in RNA. RNA 15:1314–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gherghe CM, Shajani Z, Wilkinson KA, Varani G, Weeks KM (2008) Strong correlation between SHAPE chemistry and the generalized NMR order parameter (S2) in RNA. J Am Chem Soc 130:12244–12245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Laederach A, Das R, Vicens Q, Pearlman SM, Brenowitz M, Herschlag D, Altman RB (2008) Semi-automated and rapid quantification of nucleic acid footprinting and structure mapping experiment. Nat Protoc 3(9):1395–1401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Soulière, M.F., Micura, R. (2014). Use of SHAPE to Select 2AP Substitution Sites for RNA–Ligand Interactions and Dynamics Studies. In: Lafontaine, D., Dubé, A. (eds) Therapeutic Applications of Ribozymes and Riboswitches. Methods in Molecular Biology, vol 1103. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-730-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-730-3_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-729-7

  • Online ISBN: 978-1-62703-730-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics