Assaying for BRAF V600E in Tissue and Blood in Melanoma

  • David J. Panka
  • James W. Mier
  • Ryan J. Sullivan
Part of the Methods in Molecular Biology book series (MIMB, volume 1102)


The BrafV600E mutation has been detected in patients with metastatic melanoma, colon, thyroid, and other cancers. Studies suggested that tumors with this mutation are especially sensitive to BRAF inhibitors-hence the need to reliably determine the BRAF status of tumor specimens. The present technologies used to screen for this mutation fail to address the problems associated with infiltrating stromal and immune cells bearing wild-type BRAF alleles and thus may fail to detect the presence of mutant BRAFV600E tumors. We have developed a rapid, inexpensive method of BRAF analysis that reduces the contamination of wild-type BRAF sequences from tumor biopsies. The protocol involves a series of PCR amplifications and restriction digestions that take advantage of unique features of both wild-type and mutant BRAF RNA at codon 600. Using this protocol, mutant BRAF can be detected in RNA from mixed populations with as few as 0.1 % BRAFV600E mutant containing cells.

Key words

BRAFV600E Biomarker Target Melanoma test TspR1restriction digestion Vemurafenib Dabrafenib Trametanib 


  1. 1.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
  2. 2.
    National Cancer Institute. Surveillance Epidemiology and End Results.
  3. 3.
    Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedCrossRefGoogle Scholar
  4. 4.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRefGoogle Scholar
  5. 5.
    Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedCrossRefGoogle Scholar
  6. 6.
    Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954PubMedCrossRefGoogle Scholar
  7. 7.
    Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819PubMedCrossRefGoogle Scholar
  8. 8.
    Sosman JA, Kim KB, Schuchter L et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714PubMedCrossRefGoogle Scholar
  9. 9.
    Kefford R, Arkenau H, Brown MP, Millward M, et al (2010) Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol 28(15s):abstr 8503Google Scholar
  10. 10.
    Johannessen CM, Boehm JS, Kim SY et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972PubMedCrossRefGoogle Scholar
  11. 11.
    Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRefGoogle Scholar
  12. 12.
    Montagut C, Sharma SV, Shioda T et al (2008) Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 68:4853–4861PubMedCrossRefGoogle Scholar
  13. 13.
    Poulikakos PI, Persaud Y, Janakiraman M et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF (V600E). Nature 480:387–390PubMedCrossRefGoogle Scholar
  14. 14.
    Shi H, Moriceau G, Kong X et al (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3:724PubMedCrossRefGoogle Scholar
  15. 15.
    Villanueva J, Vultur A, Lee JT et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695PubMedCrossRefGoogle Scholar
  16. 16.
    Kirkwood JM, Manola J, Ibrahim J et al (2004) A pooled analysis of Eastern Cooperative Oncology Group and Intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res 10:1670–1677PubMedCrossRefGoogle Scholar
  17. 17.
    Gogas J, Ioannovich J, Dafni U et al (2006) Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 354:709–718PubMedCrossRefGoogle Scholar
  18. 18.
    Lin J, Goto Y, Murata H et al (2011) Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression. Br J Cancer 104:464–468PubMedCrossRefGoogle Scholar
  19. 19.
    Yancovitz M, Litterman A, Yoon J et al (2012) Intra- and inter-tumor heterogeneity of BRAFV600E mutations in primary and metastatic melanoma. PLoS One 7(1):e29336 (1–8)CrossRefGoogle Scholar
  20. 20.
    NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Melanoma version 3 2012. (2012)
  21. 21.
    Panka DJ, Sullivan RJ, Mier JW (2010) An inexpensive, specific and highly sensitive protocol to detect the BrafV600E mutation in melanoma tumor biopsies and blood. Melanoma Res 20:401–407PubMedGoogle Scholar
  22. 22.
    Mocellin S, Hoon D, Ambrosi A et al (2006) The prognostic value of circulating tumor cells in patients with melanoma: a systemic review and meta-analysis. Clin Cancer Res 12:4605–4613PubMedCrossRefGoogle Scholar
  23. 23.
    Sullivan RJ, Lawrence DP, Flaherty KT et al (2012) Predicting early relapse in patients with BRAFV600E melanoma with a highly sensitive blood BRAF assay. J Clin Oncol 30(suppl; abstr 8516)Google Scholar
  24. 24.
    Kitago M, Koyanagi K, Nakamura T et al (2009) mRNA expression and BRAF mutation in circulating melanoma cells isolated from peripheral blood with high molecular weight melanoma-associated antigen-specific monoclonal antibody beads. Clin Chem 55:757–764PubMedCrossRefGoogle Scholar
  25. 25.
    Langland R, Sharp T, Tsai J et al (2006) Development of a companion diagnostic test for inhibitors of V600E BRAF. First AACR international conference on molecular diagnostics in cancer therapeutic development, 12–15 Sept 2006, abstr A13Google Scholar
  26. 26.
    McCullough RM, Cantor CR, Ding C (2005) High-throughput alternative splicing quantification by primer extension and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nucleic Acids Res 33:e99PubMedCrossRefGoogle Scholar
  27. 27.
    Elvidge GP, Price TS, Glenny L et al (2005) Development and evaluation of real competitive PCR for high-throughput quantitative applications. Anal Biochem 339:231–241PubMedCrossRefGoogle Scholar
  28. 28.
    Kwak JY, Kim EK, Kim JK et al (2010) Dual priming oligonucleotide-based multiplex PCR analysis for detection of BRAF(V600E) mutation in FNAB samples of thyroid nodules in BRAF(V600E) mutation-prevalent area. Head Neck 32:490–498PubMedGoogle Scholar
  29. 29.
    Miller CJ, Cheung M, Sharma A et al (2004) Method of mutation analysis may contribute to discrepancies in reports of (V599E)BRAF mutation frequencies in melanocytic neoplasms. J Invest Dermatol 123:990–992PubMedCrossRefGoogle Scholar
  30. 30.
    Board RE, Ellison G, Orr MC et al (2009) Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer 101:1724–1730PubMedCrossRefGoogle Scholar
  31. 31.
    Morlan J, Baker J, Sinicropi D (2009) Mutation detection by real-time PCR: a simple, robust and highly selective method. PLoS One 4:e4584PubMedCrossRefGoogle Scholar
  32. 32.
    Oldenburg RP, Liu MS, Kolodney MS (2008) Selective amplification of rare mutations using locked nucleic acid oligonucleotides that competitively inhibit primer binding to wild-type DNA. J Invest Dermatol 128:398–402PubMedCrossRefGoogle Scholar
  33. 33.
    Dominguez PL, Kolodney MS (2005) Wild-type blocking polymerase chain reaction for detection of single nucleotide minority mutations from clinical specimens. Oncogene 24:6830–6834PubMedCrossRefGoogle Scholar
  34. 34.
    Zatelli MC, Trasforini G, Leoni S et al (2009) BRAF V600E mutation analysis increases diagnostic accuracy for papillary thyroid carcinoma in fine-needle aspiration biopsies. Eur J Endocrinol 161:467–473PubMedCrossRefGoogle Scholar
  35. 35.
    Domingo E, Laiho P, Ollikainen M et al (2004) BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41:664–668PubMedCrossRefGoogle Scholar
  36. 36.
    Sidransky D, Cohen Y, Xing M (2008) BRAF mutation T1796A in thyroid cancers. US Patent 7,378,233, 27 May 2008Google Scholar
  37. 37.
    Oikonomou E, Makrodouli E, Evagelidou M et al (2009) BRAF(V600E) efficient transformation and induction of microsatellite instability versus KRAS(G12V) induction of senescence markers in human colon cancer cells. Neoplasia 11:1116–1131PubMedGoogle Scholar
  38. 38.
    French AJ, Sargent DJ, Burgart LJ et al (2008) Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res 14:3408–3415PubMedCrossRefGoogle Scholar
  39. 39.
    Vandrovcova J, Lagerstedt-Robinsson K, Påhlman L et al (2006) Somatic BRAF-V600E mutations in familial colorectal cancer. Cancer Epidemiol Biomarkers Prev 15:2270–2273PubMedCrossRefGoogle Scholar
  40. 40.
    Cradic KW, Milosevic D, Rosenberg AM et al (2009) Mutant BRAF(T1799A) can be detected in the blood of papillary thyroid carcinoma patients and correlates with disease status. J Clin Endocrinol Metab 94:5001–5009PubMedCrossRefGoogle Scholar
  41. 41.
    Orru G, Coghe F, Faa G et al (2010) Rapid multiplex real-time PCR by molecular beacons for different BRAF allele detection in papillary thyroid carcinoma. Diagn Mol Pathol 19:1–8PubMedCrossRefGoogle Scholar
  42. 42.
    Wojciechowska K, Lewinski A (2006) BRAF mutations in papillary thyroid carcinoma. Endocr Regul 40:129–138PubMedGoogle Scholar
  43. 43.
    Schiffman JD, Hodgson JG, VandenBerg SR et al (2010) Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70:512–519PubMedCrossRefGoogle Scholar
  44. 44.
    Jeong JH, Wang Z, Guimaraes AS et al (2008) BRAF activation initiates but does not maintain invasive prostate adenocarcinoma. PLoS One 3:e3949PubMedCrossRefGoogle Scholar
  45. 45.
    Litterman AJ, Pollens D, Warycha, MA et al (2008) Tumor heterogeneity: evidence from BRAF V600E mutation detection. J Clin Oncol 26(May 20 suppl;abstr 20022)Google Scholar
  46. 46.
    Ju ST, Panka DJ, Cui H et al (1995) Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444–448PubMedCrossRefGoogle Scholar
  47. 47.
    Wilson BJ, Kocvara H (1975) A simple rapid method for layering blood on Ficoll-Isopaque gradients. J Immunol Methods 9:67–68PubMedCrossRefGoogle Scholar
  48. 48.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • David J. Panka
    • 1
  • James W. Mier
    • 1
  • Ryan J. Sullivan
    • 2
  1. 1.Beth Israel Deaconess Medical CenterBostonUSA
  2. 2.Center for Melanoma, Massachusetts General Hospital Cancer CenterBostonUSA

Personalised recommendations