The Clinical Use of PET/CT in the Evaluation of Melanoma

  • Khun Visith Keu
  • Andrei H. Iagaru
Part of the Methods in Molecular Biology book series (MIMB, volume 1102)


Positron emission tomography combined with computed tomography (PET/CT) has emerged in the last decade as a dominant imaging modality used for staging, monitoring response and surveillance of various cancers, including melanoma. Using 2-deoxy-2-(18F)fluoro-d-glucose (18F-FDG) as the radiopharmaceutical, PET/CT has demonstrated its efficacy and its utility in the management of patients with advanced melanoma. Nonetheless, challenges remain in the early stage evaluation of melanoma and in the development of novel radiotracers to better characterize lesions found on PET/CT. This chapter focuses on the advantages and limitations of this imaging modality in melanoma. We also detail and describe the approach to perform 18F-FDG PET/CT, the methods to accurately quantify lesions, as well as the pearls/pitfalls of image interpretation. Finally, an overview of preclinical and investigational clinical radiopharmaceuticals is presented.

Key words

PET/CT FDG Melanoma Molecular imaging 


  1. 1.
    Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol 13(8):790–801. doi: 10.1016/s1470-2045(12)70211-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics, 2004. CA Cancer J Clin 54(1):8–29CrossRefPubMedGoogle Scholar
  3. 3.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. Ca 60(5):277–300PubMedGoogle Scholar
  4. 4.
    Linos E, Swetter SM, Cockburn MG, Colditz GA, Clarke CA (2009) Increasing burden of melanoma in the United States. J Invest Dermatol 129(7):1666–1674. doi: 10.1038/jid.2008.423 CrossRefPubMedGoogle Scholar
  5. 5.
    Uren RF, Thompson JF, Howman-Giles R, Chung DK (2006) The role of lymphoscintigraphy in the detection of lymph node drainage in melanoma. Surg Oncol Clin N Am 15(2):285–300. doi: 10.1016/j.soc.2005.12.006 CrossRefPubMedGoogle Scholar
  6. 6.
    Statius Muller MG, Hennipman FA, van Leeuwen PA, Pijpers R, Vuylsteke RJ, Meijer S (2002) Unpredictability of lymphatic drainage patterns in melanoma patients. Eur J Nucl Med Mol Imaging 29(2):255–261CrossRefPubMedGoogle Scholar
  7. 7.
    Elias Brountzos IP, Dimitrios Bafaloukos, Dimitrios Kelekis (2001) Bone metastases from malignant melanoma: a retrospective review and analysis of 28 cases. Radiol Oncol 35:209–214Google Scholar
  8. 8.
    Kalff V, Hicks RJ, Ware RE, Greer B, Binns DS, Hogg A (2002) Evaluation of high-risk melanoma: comparison of [18F]FDG PET and high-dose 67Ga SPET. Eur J Nucl Med Mol Imaging 29(4):506–515. doi: 10.1007/s00259-001-0735-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. doi: 10.1038/nrc1478 CrossRefPubMedGoogle Scholar
  10. 10.
    James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965CrossRefPubMedGoogle Scholar
  11. 11.
    Nutt R (2002) The history of positron emission tomography. Mol Imaging Biol 4(1):11CrossRefPubMedGoogle Scholar
  12. 12.
    Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48(3):471–480PubMedGoogle Scholar
  13. 13.
    Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC (2011) Physical performance of the new hybrid PETCT discovery-690. Med Phys 38(10):5394–5411. doi: 10.1118/1.3635220 CrossRefPubMedGoogle Scholar
  14. 14.
    Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW (2011) Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 56(8):2375–2389. doi: 10.1088/0031-9155/56/8/004 CrossRefPubMedGoogle Scholar
  15. 15.
    Basu S, Kwee TC, Surti S, Akin EA, Yoo D, Alavi A (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18. doi: 10.1111/j.1749-6632.2011.06077.x CrossRefPubMedGoogle Scholar
  16. 16.
    Reinhardt MJ, Joe AY, Jaeger U, Huber A, Matthies A, Bucerius J, Roedel R, Strunk H, Bieber T, Biersack HJ, Tuting T (2006) Diagnostic performance of whole body dual modality 18F-FDG PET/CT imaging for N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol 24(7):1178–1187. doi: 10.1200/jco.2005.03.5634 CrossRefPubMedGoogle Scholar
  17. 17.
    Vallabhajosula S, Solnes L, Vallabhajosula B (2011) A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med 41(4):246–264. doi: 10.1053/j.semnuclmed.2011.02.003 CrossRefPubMedGoogle Scholar
  18. 18.
    Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE (1978) Labeled 2-deoxy-d-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2-fluoro-d-glucose. J Labelled Comp Rad 14(2):175–183. doi: 10.1002/jlcr.2580140204 CrossRefGoogle Scholar
  19. 19.
    Yu S (2006) Review of F-FDG synthesis and quality control. Biomed Imaging Interv J 2(4):e57. doi: 10.2349/biij.2.4.e57 CrossRefPubMedGoogle Scholar
  20. 20.
    Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202(3):654–662. doi: 10.1002/jcp.20166 CrossRefPubMedGoogle Scholar
  21. 21.
    Buck AK, Reske SN (2004) Cellular origin and molecular mechanisms of 18F-FDG uptake: is there a contribution of the endothelium? J Nucl Med 45(3):461–463PubMedGoogle Scholar
  22. 22.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314CrossRefPubMedGoogle Scholar
  23. 23.
    Berger KL, Nicholson SA, Dehdashti F, Siegel BA (2000) FDG PET evaluation of mucinous neoplasms. Am J Roentgenol 174(4):1005–1008CrossRefGoogle Scholar
  24. 24.
    Bos R, van der Hoeven JJM, van der Wall E, van der Groep P, van Diest PJ, Comans EFI, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CFM (2002) Biologic correlates of 18fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20(2):379–387. doi: 10.1200/jco.20.2.379 CrossRefPubMedGoogle Scholar
  25. 25.
    Kaneta T, Hakamatsuka T, Takanami K, Yamada T, Takase K, Sato A, Higano S, Kinomura S, Fukuda H, Takahashi S, Yamada S (2006) Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization. Ann Nucl Med 20(3):203–208CrossRefPubMedGoogle Scholar
  26. 26.
    Beyer T, Czernin J, Freudenberg LS (2011) Variations in clinical PET/CT operations: results of an international survey of active PET/CT users. J Nucl Med 52(2):303–310. doi: 10.2967/jnumed.110.079624 CrossRefPubMedGoogle Scholar
  27. 27.
    Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hanna L, Stine SH, Coleman RE (2009) The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the national oncologic PET registry. Cancer 115(2):410–418. doi: 10.1002/cncr.24000 CrossRefPubMedGoogle Scholar
  28. 28.
    Maubec E, Lumbroso J, Masson F, Suciu V, Kolb F, Mamelle G, Cavalcanti A, Boitier F, Spatz A, Auperin A, Leboulleux S, Avril MF (2007) F-18 fluorodeoxy-d-glucose positron emission tomography scan in the initial evaluation of patients with a primary melanoma thicker than 4 mm. Melanoma Res 17(3):147–154. doi: 10.1097/CMR.0b013e32815c10b0 CrossRefPubMedGoogle Scholar
  29. 29.
    Wagner JD, Schauwecker D, Davidson D, Coleman JJ III, Saxman S, Hutchins G, Love C, Hayes JT (1999) Prospective study of fluorodeoxyglucose-positron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol 17(5):1508PubMedGoogle Scholar
  30. 30.
    Singh B, Ezziddin S, Palmedo H, Reinhardt M, Strunk H, Tuting T, Biersack HJ, Ahmadzadehfar H (2008) Preoperative 18F-FDG-PET/CT imaging and sentinel node biopsy in the detection of regional lymph node metastases in malignant melanoma. Melanoma Res 18(5):346–352. doi: 10.1097/CMR.0b013e32830b363b CrossRefPubMedGoogle Scholar
  31. 31.
    Horn J, Sjostrand H, Lock-Andersen J, Loft A (2010) PET scanning for malignant melanoma and positive sentinel node diagnostics. Ugeskr Laeger 172(15):1126–1130PubMedGoogle Scholar
  32. 32.
    Bastiaannet E, Wobbes T, Hoekstra OS, van der Jagt EJ, Brouwers AH, Koelemij R, de Klerk JM, Oyen WJ, Meijer S, Hoekstra HJ (2009) Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography and computed tomography in patients with melanoma with palpable lymph node metastases: diagnostic accuracy and impact on treatment. J Clin Oncol 27(28):4774–4780. doi: 10.1200/jco.2008.20.1822 CrossRefPubMedGoogle Scholar
  33. 33.
    Aukema TS, Valdes Olmos RA, Wouters MW, Klop WM, Kroon BB, Vogel WV, Nieweg OE (2010) Utility of preoperative 18F-FDG PET/CT and brain MRI in melanoma patients with palpable lymph node metastases. Ann Surg Oncol 17(10):2773–2778. doi: 10.1245/s10434-010-1088-y CrossRefPubMedGoogle Scholar
  34. 34.
    Krug B, Crott R, Lonneux M, Baurain JF, Pirson AS, Vander Borght T (2008) Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology 249(3):836–844. doi: 10.1148/radiol.2493080240 CrossRefPubMedGoogle Scholar
  35. 35.
    Strobel K, Dummer R, Husarik DB, Perez Lago M, Hany TF, Steinert HC (2007) High-risk melanoma: accuracy of FDG PET/CT with added CT morphologic information for detection of metastases. Radiology 244(2):566–574. doi: 10.1148/radiol.2442061099 CrossRefPubMedGoogle Scholar
  36. 36.
    Ho Shon I, Chung DKV, Saw RPM, Thompson J (2008) Guidelines for imaging in cutaneous melanoma. Nucl Med Commun 29(10):877–879CrossRefPubMedGoogle Scholar
  37. 37.
    Xing Y, Bronstein Y, Ross MI, Askew RL, Lee JE, Gershenwald JE, Royal R, Cormier JN (2011) Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. J Natl Cancer Inst 103(2):129–142. doi: 10.1093/jnci/djq455 CrossRefPubMedGoogle Scholar
  38. 38.
    Iagaru A, Quon A, Johnson D, Gambhir SS, McDougall IR (2007) 2-Deoxy-2-[F-18]fluoro-d-glucose positron emission tomography/computed tomography in the management of melanoma. Mol Imaging Biol 9(1):50–57. doi: 10.1007/s11307-006-0065-0 CrossRefPubMedGoogle Scholar
  39. 39.
    Ho Shon IA, Chung DK, Saw RP, Thompson JF (2008) Imaging in cutaneous melanoma. Nucl Med Commun 29(10):847–876. doi: 10.1097/MNM.0b013e32830439fb CrossRefPubMedGoogle Scholar
  40. 40.
    Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47(5):885–895PubMedGoogle Scholar
  41. 41.
    Boellaard R, O'Doherty M, Weber W, Mottaghy F, Lonsdale M, Stroobants S, Oyen WJG, Kotzerke J, Hoekstra O, Pruim J, Marsden P, Tatsch K, Hoekstra C, Visser E, Arends B, Verzijlbergen F, Zijlstra J, Comans EFI, Lammertsma A, Paans A, Willemsen A, Beyer T, Bockisch A, Schaefer Prokop C, Delbeke D, Baum R, Chiti A, Krause B (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37(1):181–200CrossRefPubMedGoogle Scholar
  42. 42.
    Masuda Y, Kondo C, Matsuo Y, Uetani M, Kusakabe K (2009) Comparison of imaging protocols for 18F-FDG PET/CT in overweight patients: optimizing scan duration versus administered dose. J Nucl Med 50(6):844–848. doi: 10.2967/jnumed.108.060590 CrossRefPubMedGoogle Scholar
  43. 43.
    ICRP (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP 38(1–2):1–197. doi: 10.1016/j.icrp.2008.08.003 PubMedGoogle Scholar
  44. 44.
    Dougeni E, Faulkner K, Panayiotakis G (2012) A review of patient dose and optimisation methods in adult and paediatric CT scanning. Eur J Radiol 81(4):e665–e683. doi: 10.1016/j.ejrad.2011.05.025 CrossRefPubMedGoogle Scholar
  45. 45.
    Kumar S, Pandey AK, Sharma P, Malhotra A, Kumar R (2012) Optimization of the CT acquisition protocol to reduce patient dose without compromising the diagnostic quality for PET-CT: a phantom study. Nucl Med Commun 33(2):164–170. doi: 10.1097/MNM.0b013e32834e0993 CrossRefPubMedGoogle Scholar
  46. 46.
    Xia T, Alessio AM, De Man B, Manjeshwar R, Asma E, Kinahan PE (2012) Ultra-low dose CT attenuation correction for PET/CT. Phys Med Biol 57(2):309–328. doi: 10.1088/0031-9155/57/2/309 CrossRefPubMedGoogle Scholar
  47. 47.
    McKeown C, Dempsey MF, Gillen G, Paterson C (2012) Quantitative analysis shows that contrast medium in positron emission tomography/computed tomography may cause significant artefacts. Nucl Med Commun 33(8):864–871. doi: 10.1097/MNM.0b013e3283531d45 CrossRefPubMedGoogle Scholar
  48. 48.
    El Fakhri G, Santos PA, Badawi RD, Holdsworth CH, Van Den Abbeele AD, Kijewski MF (2007) Impact of acquisition geometry, image processing, and patient size on lesion detection in whole-body 18F-FDG PET. J Nucl Med 48(12):1951–1960. doi: 10.2967/jnumed.108.007369 CrossRefPubMedGoogle Scholar
  49. 49.
    Sugawara Y, Zasadny KR, Neuhoff AW, Wahl RL (1999) Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology 213(2):521–525CrossRefPubMedGoogle Scholar
  50. 50.
    Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50(Suppl 1):11S–20S. doi: 10.2967/jnumed.108.057182 CrossRefPubMedGoogle Scholar
  51. 51.
    Culverwell AD, Scarsbrook AF, Chowdhury FU (2011) False-positive uptake on 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography/computed tomography (PET/CT) in oncological imaging. Clin Radiol 66(4):366–382. doi: 10.1016/j.crad.2010.12.004 CrossRefPubMedGoogle Scholar
  52. 52.
    Schöder H, Fury M, Lee N, Kraus D (2009) PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med 50(Suppl 1):74S–88S. doi: 10.2967/jnumed.108.057208 CrossRefPubMedGoogle Scholar
  53. 53.
    Vriens D, Visser E, Lioe-Fee G-O, Oyen W (2010) Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging 37(7):1408–1425. doi: 10.1007/s00259-009-1306-7 CrossRefPubMedGoogle Scholar
  54. 54.
    Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H (1993) Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 34(1):1–6PubMedGoogle Scholar
  55. 55.
    Langen K-J, Braun U, Kops ER, Herzog H, Kuwert T, Nebeling B, Feinendegen LE (1993) The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 34(3):355–359PubMedGoogle Scholar
  56. 56.
    Ceriani L, Suriano S, Ruberto T, Giovanella L (2011) Could different hydration protocols affect the quality of 18F-FDG PET/CT images? J Nucl Med Technol 39(2):77–82. doi: 10.2967/jnmt.110.081265 CrossRefPubMedGoogle Scholar
  57. 57.
    Jackson RS, Schlarman TC, Hubble WL, Osman MM (2006) Prevalence and patterns of physiologic muscle uptake detected with whole-body 18F-FDG PET. J Nucl Med Technol 34(1):29–33PubMedGoogle Scholar
  58. 58.
    Costelloe CM, Murphy WA, Chasen BA (2009) Musculoskeletal pitfalls in 18F-FDG PET/CT: pictorial review. Am J Roentgenol 193(3 Supplement):WS1–WS13. doi: 10.2214/ajr.07.7138 CrossRefGoogle Scholar
  59. 59.
    Osman MM, Muzaffar R, Altinyay ME, Teymouri C (2011) FDG dose extravasations in PET/CT: frequency and impact on SUV measurements. Front Oncol 1:41. doi: 10.3389/fonc.2011.00041 CrossRefPubMedGoogle Scholar
  60. 60.
    Garcia CA, Van Nostrand D, Atkins F, Acio E, Butler C, Esposito G, Kulkarni K, Majd M (2006) Reduction of brown fat 2-deoxy-2-[F-18]fluoro-d-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol Imaging Biol 8(1):24–29. doi: 10.1007/s11307-005-0030-3 CrossRefPubMedGoogle Scholar
  61. 61.
    Tatsumi M, Engles JM, Ishimori T, Nicely O, Cohade C, Wahl RL (2004) Intense (18)F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med 45(7):1189–1193PubMedGoogle Scholar
  62. 62.
    Ouellet V, Labb S, Blondin D, Phoenix S, Gurin B, Haman F, Turcotte E, Richard D, Carpentier A (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122(2):545–552CrossRefPubMedGoogle Scholar
  63. 63.
    Gelfand MJ, O'Hara SM, Curtwright LA, Maclean JR (2005) Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35(10):984–990. doi: 10.1007/s00247-005-1505-8 CrossRefPubMedGoogle Scholar
  64. 64.
    Williams G, Kolodny GM (2008) Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol 190(5):1406–1409. doi: 10.2214/ajr.07.3205 CrossRefPubMedGoogle Scholar
  65. 65.
    Hicks RJ, Binns D, Stabin MG (2001) Pattern of uptake and excretion of (18)F-FDG in the lactating breast. J Nucl Med 42(8):1238–1242PubMedGoogle Scholar
  66. 66.
    Niederkohr RD, Rosenberg J, Shabo G, Quon A (2007) Clinical value of including the head and lower extremities in 18F-FDG PET/CT imaging for patients with malignant melanoma. Nucl Med Commun 28(9):688–695. doi: 10.1097/MNM.0b013e32827420cc CrossRefPubMedGoogle Scholar
  67. 67.
    Querellou S, Keromnes N, Abgral R, Sassolas B, Le Roux PY, Cavarec MB, Le Duc-Pennec A, Couturier O, Salaun PY (2010) Clinical and therapeutic impact of 18F-FDG PET/CT whole-body acquisition including lower limbs in patients with malignant melanoma. Nucl Med Commun 31(9):766–772. doi: 10.1097/MNM.0b013e32833cb8b7 CrossRefPubMedGoogle Scholar
  68. 68.
    Pfluger T, Melzer HI, Schneider V, Fougere CL, Coppenrath E, Berking C, Bartenstein P, Weiss M (2011) PET/CT in malignant melanoma: contrast-enhanced CT versus plain low-dose CT. Eur J Nucl Med Mol Imaging 38(5):822–831. doi: 10.1007/s00259-010-1702-z CrossRefPubMedGoogle Scholar
  69. 69.
    Krug B, Crott R, Roch I, Lonneux M, Beguin C, Baurain JF, Pirson AS, Vander Borght T (2010) Cost-effectiveness analysis of FDG PET-CT in the management of pulmonary metastases from malignant melanoma. Acta Oncol 49(2):192–200. doi: 10.3109/02841860903440254 CrossRefPubMedGoogle Scholar
  70. 70.
    Bastiaannet E, Uyl-de Groot CA, Brouwers AH, van der Jagt EJ, Hoekstra OS, Oyen W, Verzijlbergen F, van Ooijen B, Thompson JF, Hoekstra HJ (2012) Cost-effectiveness of adding FDG-PET or CT to the diagnostic work-up of patients with stage III melanoma. Ann Surg 255(4):771–776. doi: 10.1097/SLA.0b013e31824a5742 CrossRefPubMedGoogle Scholar
  71. 71.
    Vidal M, Vidal-Sicart S, Torrents A, Perissinotti A, Navales I, Paredes P, Pons F (2012) Accuracy and reproducibility of lymphoscintigraphy for sentinel node detection in patients with cutaneous melanoma. J Nucl Med 53(8):1193–1199. doi: 10.2967/jnumed.112.104463 CrossRefPubMedGoogle Scholar
  72. 72.
    Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schulthess GK (2002) PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 29(3):351–360CrossRefPubMedGoogle Scholar
  73. 73.
    Osman MM, Cohade C, Nakamoto Y, Marshall LT, Leal JP, Wahl RL (2003) Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 44(2):240–243PubMedGoogle Scholar
  74. 74.
    Metser U, Miller E, Lerman H, Even-Sapir E (2007) Benign nonphysiologic lesions with increased 18F-FDG uptake on PET/CT: characterization and incidence. Am J Roentgenol 189(5):1203–1210. doi: 10.2214/ajr.07.2083 CrossRefGoogle Scholar
  75. 75.
    Liu Y, Ghesani NV, Zuckier LS (2010) Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy. Semin Nucl Med 40(4):294–315. doi: 10.1053/j.semnuclmed.2010.02.002 CrossRefPubMedGoogle Scholar
  76. 76.
    Kazama T, Swanston N, Podoloff DA, Macapinlac HA (2005) Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 32(12):1406–1411. doi: 10.1007/s00259-005-1890-0 CrossRefPubMedGoogle Scholar
  77. 77.
    Klijanienko J, Petras S, De Bosschere L, Paulmier B, Le Tourneau C, Rodriguez J (2012) False-positive FDG PET/CT uptake in Warthin tumor in head and neck oncological patients confirmed by a fine needle aspiration. Diagn Cytopathol 40(3):282–284. doi: 10.1002/dc.21640 CrossRefPubMedGoogle Scholar
  78. 78.
    Finkelstein SE, Carrasquillo JA, Hoffman JM, Galen B, Choyke P, White DE, Rosenberg SA, Sherry RM (2004) A prospective analysis of positron emission tomography and conventional imaging for detection of stage IV metastatic melanoma in patients undergoing metastasectomy. Ann Surg Oncol 11(8):731–738. doi: 10.1245/aso.2004.01.023 CrossRefPubMedGoogle Scholar
  79. 79.
    Wagner JD, Schauwecker D, Davidson D, Logan T, Coleman JJ 3rd, Hutchins G, Love C, Wenck S, Daggy J (2005) Inefficacy of F-18 fluorodeoxy-d-glucose-positron emission tomography scans for initial evaluation in early-stage cutaneous melanoma. Cancer 104(3):570–579. doi: 10.1002/cncr.21189 CrossRefPubMedGoogle Scholar
  80. 80.
    Cantorias MV, Figueroa SD, Quinn TP, Lever JR, Hoffman TJ, Watkinson LD, Carmack TL, Cutler CS (2009) Development of high-specific-activity (68)Ga-labeled DOTA-rhenium-cyclized alpha-MSH peptide analog to target MC1 receptors overexpressed by melanoma tumors. Nucl Med Biol 36(5):505–513. doi: 10.1016/j.nucmedbio.2009.01.017 CrossRefPubMedGoogle Scholar
  81. 81.
    Wei L, Zhang X, Gallazzi F, Miao Y, Jin X, Brechbiel MW, Xu H, Clifford T, Welch MJ, Lewis JS, Quinn TP (2009) Melanoma imaging using (111)In-, (86)Y- and (68)Ga-labeled CHX-A″-Re(Arg11)CCMSH. Nucl Med Biol 36(4):345–354. doi: 10.1016/j.nucmedbio.2009.01.007 CrossRefPubMedGoogle Scholar
  82. 82.
    Ren G, Liu S, Liu H, Miao Z, Cheng Z (2010) Radiofluorinated rhenium cyclized alpha-MSH analogues for PET imaging of melanocortin receptor 1. Bioconjug Chem 21(12):2355–2360. doi: 10.1021/bc100391a CrossRefPubMedGoogle Scholar
  83. 83.
    Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-l-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med 42(2):248–256PubMedGoogle Scholar
  84. 84.
    de Vries EFJ, Luurtsema G, Brüssermann M, Elsinga PH, Vaalburg W (1999) Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fluoro-l-DOPA. Appl Radiat Isot 51(4):389–394. doi: 10.1016/s0969-8043(99)00057-3 CrossRefGoogle Scholar
  85. 85.
    Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 12(13):3942–3949. doi: 10.1158/1078-0432.ccr-06-0266 CrossRefPubMedGoogle Scholar
  86. 86.
    Yang J, Guo H, Miao Y (2010) Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging. Nucl Med Biol 37(8):873–883. doi: 10.1016/j.nucmedbio.2010.05.006 CrossRefPubMedGoogle Scholar
  87. 87.
    Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ (2003) 3′-18F-fluoro-3′-deoxy-l-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med 44(12):1927–1932PubMedGoogle Scholar
  88. 88.
    Ribas A, Benz MR, Allen-Auerbach MS, Radu C, Chmielowski B, Seja E, Williams JL, Gomez-Navarro J, McCarthy T, Czernin J (2010) Imaging of CTLA4 blockade-induced cell replication with (18)F-FLT PET in patients with advanced melanoma treated with tremelimumab. J Nucl Med 51(3):340–346. doi: 10.2967/jnumed.109.070946 CrossRefPubMedGoogle Scholar
  89. 89.
    Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410. doi: 10.1038/nrc3064 CrossRefPubMedGoogle Scholar
  90. 90.
    Wyss MT, Honer M, Schubiger PA, Ametamey SM (2006) NanoPET imaging of [(18)F]fluoromisonidazole uptake in experimental mouse tumours. Eur J Nucl Med Mol Imaging 33(3):311–318. doi: 10.1007/s00259-005-1951-4 CrossRefPubMedGoogle Scholar
  91. 91.
    Rudman SM, Jameson MB, McKeage MJ, Savage P, Jodrell DI, Harries M, Acton G, Erlandsson F, Spicer JF (2011) A phase 1 study of AS1409, a novel antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin Cancer Res 17(7):1998–2005. doi: 10.1158/1078-0432.ccr-10-2490 CrossRefPubMedGoogle Scholar
  92. 92.
    Dadachova E, Revskaya E, Sesay MA, Damania H, Boucher R, Sellers RS, Howell RC, Burns L, Thornton GB, Natarajan A, Mirick GR, DeNardo SJ, DeNardo GL, Casadevall A (2008) Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Cancer Biol Ther 7(7):1116–1127CrossRefPubMedGoogle Scholar
  93. 93.
    Revskaya E, Jongco AM, Sellers RS, Howell RC, Koba W, Guimaraes AJ, Nosanchuk JD, Casadevall A, Dadachova E (2009) Radioimmunotherapy of experimental human metastatic melanoma with melanin-binding antibodies and in combination with dacarbazine. Clin Cancer Res 15(7):2373–2379. doi: 10.1158/1078-0432.ccr-08-2376 CrossRefPubMedGoogle Scholar
  94. 94.
    Povoski SP, Hall NC, Martin EW Jr, Walker MJ (2008) Multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic activity in a case of occult recurrent metastatic melanoma. World J Surg Oncol 6:1. doi: 10.1186/1477-7819-6-1 CrossRefPubMedGoogle Scholar
  95. 95.
    Franc BL, Mari C, Johnson D, Leong SP (2005) The role of a positron- and high-energy gamma photon probe in intraoperative localization of recurrent melanoma. Clin Nucl Med 30(12):787–791CrossRefPubMedGoogle Scholar
  96. 96.
    Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G (2012) Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med 53(6):928–938Google Scholar
  97. 97.
    Muller-Horvat C, Radny P, Eigentler TK, Schafer J, Pfannenberg C, Horger M, Khorchidi S, Nagele T, Garbe C, Claussen CD, Schlemmer HP (2006) Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer 42(3):342–350. doi: 10.1016/j.ejca.2005.10.008 CrossRefPubMedGoogle Scholar
  98. 98.
    Pfannenberg C, Aschoff P, Schanz S, Eschmann SM, Plathow C, Eigentler TK, Garbe C, Brechtel K, Vonthein R, Bares R, Claussen CD, Schlemmer HP (2007) Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43(3):557–564. doi: 10.1016/j.ejca.2006.11.014 CrossRefPubMedGoogle Scholar
  99. 99.
    Laurent V, Trausch G, Bruot O, Olivier P, Felblinger J, Regent D (2010) Comparative study of two whole-body imaging techniques in the case of melanoma metastases: advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT. Eur J Radiol 75(3):376–383. doi: 10.1016/j.ejrad.2009.04.059 CrossRefPubMedGoogle Scholar
  100. 100.
    Dellestable P, Granel-Brocard F, Rat AC, Olivier P, Regent D, Schmutz JL (2011) Impact of whole body magnetic resonance imaging (MRI) in the management of melanoma patients, in comparison with positron emission tomography/computed tomography (TEP/CT) and CT. Ann Dermatol Venereol 138(5):377–383. doi: 10.1016/j.annder.2011.02.023 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Khun Visith Keu
    • 1
  • Andrei H. Iagaru
    • 2
  1. 1.Département de Radiobiologie et de Médecine NucléaireUniversité de SherbrookeSherbrookeCanada
  2. 2.Radiology-Nuclear MedicineStanford University Medical CenterStanfordUSA

Personalised recommendations