Tumor-Infiltrating Lymphocytes and Their Significance in Melanoma Prognosis

  • Tobias Schatton
  • Richard A. Scolyer
  • John F. Thompson
  • Martin C. MihmJr.
Part of the Methods in Molecular Biology book series (MIMB, volume 1102)


The role of the tumor-infiltrating lymphocyte (TIL) and its relationship to prognosis has been most extensively studied in malignant melanoma. The purpose of this chapter is to discuss in depth the immunobiology and molecular aspects of lymphocyte function in general and particularly TIL function in the context of antimelanoma immunity. Emphasis is placed upon the role of these inflammatory mediators in the enhancement and impairment of progression of this often fatal human cancer. In addition, the analysis of TILs in melanoma and their direct relationship to prognosis as well as their effect on the positivity of the sentinel lymph node will be discussed. Furthermore, details of lymph node responses to metastatic melanomas and their prognostic significance will be clarified. Finally, the importance of TILs for the evaluation of therapeutic response and how TIL immunobiology could critically inform the design of novel melanoma immunotherapeutic protocols will be elucidated.

Key words

Tumor-infiltrating lymphocyte TIL Melanoma Prognosis Tumor immunology Antitumor immunity Immune surveillance Immunologic tolerance T cell Regulatory T cell Treg Cytotoxic T cell CTL Activation Priming Anergy Exhaustion Antigen presentation Antigen presenting cell Dendritic cell DC Macrophage Natural killer cell Major histocompatibility complex MHC Tumor therapy Outcome Staging Progression Metastasis Tumor-reactive lymphocyte Tumor-associated antigen gp100 Tyrosinase MART-1 Sentinal lymph node SNL CTLA-4 Ipilimumab PD-1 



We apologize to those colleagues whose work could not be cited due to space limitations. T. Schatton is the recipient of a Research Career Development Award from the Dermatology Foundation, an Innovative Research Grant from the Melanoma International Foundation, and a SPORE in Skin Cancer Developmental Project Grant (NIH/NCI).


  1. 1.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444PubMedGoogle Scholar
  2. 2.
    Moore OS Jr, Foote FW Jr (1949) The relatively favorable prognosis of medullary carcinoma of the breast. Cancer 2:635–642PubMedGoogle Scholar
  3. 3.
    Clark WH Jr, From L, Bernardino EA, Mihm MC (1969) The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 29:705–727PubMedGoogle Scholar
  4. 4.
    Clark WH Jr, Elder DE, Guerry DT, Braitman LE, Trock BJ, Schultz D, Synnestvedt M, Halpern AC (1989) Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81:1893–1904PubMedGoogle Scholar
  5. 5.
    Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310PubMedGoogle Scholar
  6. 6.
    Mihm MC Jr, Clemente CG, Cascinelli N (1996) Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab Invest 74:43–47PubMedGoogle Scholar
  7. 7.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213PubMedGoogle Scholar
  8. 8.
    Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666PubMedGoogle Scholar
  9. 9.
    Hersey P, Bindon C, Edwards A, Murray E, Phillips G, McCarthy WH (1981) Induction of cytotoxic activity in human lymphocytes against autologous and allogeneic melanoma cells in vitro by culture with interleukin 2. Int J Cancer 28:695–703PubMedGoogle Scholar
  10. 10.
    Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1841PubMedGoogle Scholar
  11. 11.
    Muul LM, Spiess PJ, Director EP, Rosenberg SA (1987) Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol 138:989–995PubMedGoogle Scholar
  12. 12.
    Ferradini L, Mackensen A, Genevee C, Bosq J, Duvillard P, Avril MF, Hercend T (1993) Analysis of T cell receptor variability in tumor-infiltrating lymphocytes from a human regressive melanoma. Evidence for in situ T cell clonal expansion. J Clin Invest 91:1183–1190PubMedGoogle Scholar
  13. 13.
    Bulkley GB, Cohen MH, Banks PM, Char DH, Ketcham AS (1975) Long-term spontaneous regression of malignant melanoma with visceral metastases. Report of a case with immunologic profile. Cancer 36:485–494PubMedGoogle Scholar
  14. 14.
    Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680PubMedGoogle Scholar
  15. 15.
    Taylor RC, Patel A, Panageas KS, Busam KJ, Brady MS (2007) Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma. J Clin Oncol 25:869–875PubMedGoogle Scholar
  16. 16.
    Thorn M, Ponten F, Bergstrom R, Sparen P, Adami HO (1994) Clinical and histopathologic predictors of survival in patients with malignant melanoma: a population-based study in Sweden. J Natl Cancer Inst 86:761–769PubMedGoogle Scholar
  17. 17.
    Burnet M (1957) Cancer; a biological approach. I. The processes of control. Br Med J 1:779–786PubMedGoogle Scholar
  18. 18.
    Mapara MY, Sykes M (2004) Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol 22:1136–1151PubMedGoogle Scholar
  19. 19.
    Rosenberg SA (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10:281–287PubMedGoogle Scholar
  20. 20.
    Pandolfi F, Boyle LA, Trentin L, Kurnick JT, Isselbacher KJ, Gattoni-Celli S (1991) Expression of HLA-A2 antigen in human melanoma cell lines and its role in T-cell recognition. Cancer Res 51:3164–3170PubMedGoogle Scholar
  21. 21.
    Kalialis LV, Drzewiecki KT, Klyver H (2009) Spontaneous regression of metastases from melanoma: review of the literature. Melanoma Res 19:275–282PubMedGoogle Scholar
  22. 22.
    Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M, Paradise C, Kunkel L, Rosenberg SA (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116PubMedGoogle Scholar
  23. 23.
    Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, Kendra KL, White RL, Gonzalez R, Kuzel TM, Curti B, Leming PD, Whitman ED, Balkissoon J, Reintgen DS, Kaufman H, Marincola FM, Merino MJ, Rosenberg SA, Choyke P, Vena D, Hwu P (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–2127PubMedGoogle Scholar
  24. 24.
    Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5:772–782PubMedGoogle Scholar
  25. 25.
    Wang Z, Seliger B, Mike N, Momburg F, Knuth A, Ferrone S (1998) Molecular analysis of the HLA-A2 antigen loss by melanoma cells SK-MEL-29.1.22 and SK-MEL-29.1.29. Cancer Res 58:2149–2157PubMedGoogle Scholar
  26. 26.
    Schatton T, Schutte U, Frank NY, Zhan Q, Hoerning A, Robles SC, Zhou J, Hodi FS, Spagnoli GC, Murphy GF, Frank MH (2010) Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res 70:697–708PubMedGoogle Scholar
  27. 27.
    Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, Longaker MT, Weissman IL (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137PubMedGoogle Scholar
  28. 28.
    Kurnick JT, Ramirez-Montagut T, Boyle LA, Andrews DM, Pandolfi F, Durda PJ, Butera D, Dunn IS, Benson EM, Gobin SJ, van den Elsen PJ (2001) A novel autocrine pathway of tumor escape from immune recognition: melanoma cell lines produce a soluble protein that diminishes expression of the gene encoding the melanocyte lineage melan-A/MART-1 antigen through down-modulation of its promoter. J Immunol 167:1204–1211PubMedGoogle Scholar
  29. 29.
    Khong HT, Wang QJ, Rosenberg SA (2004) Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother 27:184–190PubMedGoogle Scholar
  30. 30.
    Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, Robbins P, Parmiani G, Storkus WJ, Lotze MT (1996) Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 98:1633–1641PubMedGoogle Scholar
  31. 31.
    van Houdt IS, Sluijter BJ, Moesbergen LM, Vos WM, de Gruijl TD, Molenkamp BG, van den Eertwegh AJ, Hooijberg E, van Leeuwen PA, Meijer CJ, Oudejans JJ (2008) Favorable outcome in clinically stage II melanoma patients is associated with the presence of activated tumor infiltrating T-lymphocytes and preserved MHC class I antigen expression. Int J Cancer 123:609–615PubMedGoogle Scholar
  32. 32.
    Moretta A (2002) Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2:957–964PubMedGoogle Scholar
  33. 33.
    Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMedGoogle Scholar
  34. 34.
    Solana R, Casado JG, Delgado E, DelaRosa O, Marin J, Duran E, Pawelec G, Tarazona R (2007) Lymphocyte activation in response to melanoma: interaction of NK-associated receptors and their ligands. Cancer Immunol Immunother 56:101–109PubMedGoogle Scholar
  35. 35.
    Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH, Galle PR (1996) Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells–a mechanism of immune evasion? Nat Med 2:1361–1366PubMedGoogle Scholar
  36. 36.
    Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363–1366PubMedGoogle Scholar
  37. 37.
    Neuber K, Eidam B (2006) Expression of Fas ligand (CD95L) in primary malignant melanoma and melanoma metastases is associated with overall survival. Onkologie 29:361–365PubMedGoogle Scholar
  38. 38.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800PubMedGoogle Scholar
  39. 39.
    Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, Chen L (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127ra137Google Scholar
  40. 40.
    Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122PubMedGoogle Scholar
  41. 41.
    Nicolaou A, Estdale SE, Tsatmali M, Herrero DP, Thody AJ (2004) Prostaglandin production by melanocytic cells and the effect of alpha-melanocyte stimulating hormone. FEBS Lett 570:223–226PubMedGoogle Scholar
  42. 42.
    Frauwirth KA, Thompson CB (2002) Activation and inhibition of lymphocytes by costimulation. J Clin Invest 109:295–299PubMedGoogle Scholar
  43. 43.
    Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548PubMedGoogle Scholar
  44. 44.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264PubMedGoogle Scholar
  45. 45.
    Sotomayor EM, Borrello I, Rattis FM, Cuenca AG, Abrams J, Staveley-O’Carroll K, Levitsky HI (2001) Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98:1070–1077PubMedGoogle Scholar
  46. 46.
    Sotomayor EM, Borrello I, Tubb E, Rattis FM, Bien H, Lu Z, Fein S, Schoenberger S, Levitsky HI (1999) Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 5:780–787PubMedGoogle Scholar
  47. 47.
    Guerry DT, Alexander MA, Herlyn MF, Zehngebot LM, Mitchell KF, Zmijewski CM, Lusk EJ (1984) HLA-DR histocompatibility leukocyte antigens permit cultured human melanoma cells from early but not advanced disease to stimulate autologous lymphocytes. J Clin Invest 73:267–271PubMedGoogle Scholar
  48. 48.
    Bai Y, Liu J, Wang Y, Honig S, Qin L, Boros P, Bromberg JS (2002) l-selectin-dependent lymphoid occupancy is required to induce alloantigen-specific tolerance. J Immunol 168:1579–1589PubMedGoogle Scholar
  49. 49.
    Becker JC, Brabletz T, Czerny C, Termeer C, Brocker EB (1993) Tumor escape mechanisms from immunosurveillance: induction of unresponsiveness in a specific MHC-restricted CD4+ human T cell clone by the autologous MHC class II+ melanoma. Int Immunol 5:1501–1508PubMedGoogle Scholar
  50. 50.
    Brocker EB, Suter L, Sorg C (1984) HLA-DR antigen expression in primary melanomas of the skin. J Invest Dermatol 82:244–247PubMedGoogle Scholar
  51. 51.
    Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, Tamada K, Chen L (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096PubMedGoogle Scholar
  52. 52.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedGoogle Scholar
  53. 53.
    Rygiel TP, Meyaard L (2012) CD200R signaling in tumor tolerance and inflammation: a tricky balance. Curr Opin Immunol 24:233–238PubMedGoogle Scholar
  54. 54.
    Jaiswal S, Chao MP, Majeti R, Weissman IL (2010) Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31:212–219PubMedGoogle Scholar
  55. 55.
    Wherry EJ (2011) T cell exhaustion. Nat Immunol 12:492–499PubMedGoogle Scholar
  56. 56.
    Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE (2011) Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest 121:2350–2360PubMedGoogle Scholar
  57. 57.
    Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186PubMedGoogle Scholar
  58. 58.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedGoogle Scholar
  59. 59.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedGoogle Scholar
  60. 60.
    Jacobs JF, Nierkens S, Figdor CG, de Vries IJ, Adema GJ (2012) Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol 13:e32–e42PubMedGoogle Scholar
  61. 61.
    Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275PubMedGoogle Scholar
  62. 62.
    Jandus C, Bioley G, Speiser DE, Romero P (2008) Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother 57:1795–1805PubMedGoogle Scholar
  63. 63.
    Vence L, Palucka AK, Fay JW, Ito T, Liu YJ, Banchereau J, Ueno H (2007) Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci U S A 104:20884–20889PubMedGoogle Scholar
  64. 64.
    Larsen TE, Grude TH (1978) A retrospective histological study of 669 cases of primary cutaneous malignant melanoma in clinical stage I. 3. The relation between the tumour-associated lymphocyte infiltration and age and sex, tumour cell type, pigmentation, cellular atypia, mitotic count, depth of invasion, ulceration, tumour type and prognosis. Acta Pathol Microbiol Scand A 86A:523–530PubMedGoogle Scholar
  65. 65.
    Day CL Jr, Sober AJ, Kopf AW, Lew RA, Mihm MC Jr, Hennessey P, Golomb FM, Harris MN, Gumport SL, Raker JW, Malt RA, Cosimi AB, Wood WC, Roses DF, Gorstein F, Postel A, Grier WR, Mintzis MN, Fitzpatrick TB (1981) A prognostic model for clinical stage I melanoma of the upper extremity. The importance of anatomic subsites in predicting recurrent disease. Ann Surg 193:436–440PubMedGoogle Scholar
  66. 66.
    Busam KJ, Antonescu CR, Marghoob AA, Nehal KS, Sachs DL, Shia J, Berwick M (2001) Histologic classification of tumor-infiltrating lymphocytes in primary cutaneous malignant melanoma. A study of interobserver agreement. Am J Clin Pathol 115:856–860PubMedGoogle Scholar
  67. 67.
    Rao UN, Lee SJ, Luo W, Mihm MC Jr, Kirkwood JM (2010) Presence of tumor-infiltrating lymphocytes and a dominant nodule within primary melanoma are prognostic factors for relapse-free survival of patients with thick (t4) primary melanoma: pathologic analysis of the e1690 and e1694 intergroup trials. Am J Clin Pathol 133:646–653PubMedGoogle Scholar
  68. 68.
    Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, Saw RP, Thompson JF (2012) Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol 30:2678–2683PubMedGoogle Scholar
  69. 69.
    Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, Urist M, McMasters KM, Ross MI, Kirkwood JM, Atkins MB, Thompson JA, Coit DG, Byrd D, Desmond R, Zhang Y, Liu PY, Lyman GH, Morabito A (2001) Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 19:3622–3634PubMedGoogle Scholar
  70. 70.
    Balch CM, Soong SJ, Smith T, Ross MI, Urist MM, Karakousis CP, Temple WJ, Mihm MC, Barnhill RL, Jewell WR, Wanebo HJ, Desmond R (2001) Long-term results of a prospective surgical trial comparing 2 cm vs. 4 cm excision margins for 740 patients with 1–4 mm melanomas. Ann Surg Oncol 8:101–108PubMedGoogle Scholar
  71. 71.
    Azzola MF, Shaw HM, Thompson JF, Soong SJ, Scolyer RA, Watson GF, Colman MH, Zhang Y (2003) Tumor mitotic rate is a more powerful prognostic indicator than ulceration in patients with primary cutaneous melanoma: an analysis of 3661 patients from a single center. Cancer 97:1488–1498PubMedGoogle Scholar
  72. 72.
    Francken AB, Shaw HM, Thompson JF, Soong SJ, Accortt NA, Azzola MF, Scolyer RA, Milton GW, McCarthy WH, Colman MH, McGovern VJ (2004) The prognostic importance of tumor mitotic rate confirmed in 1317 patients with primary cutaneous melanoma and long follow-up. Ann Surg Oncol 11:426–433PubMedGoogle Scholar
  73. 73.
    Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, Ding S, Eggermont AM, Flaherty KT, Gimotty PA, Kirkwood JM, McMasters KM, Mihm MC Jr, Morton DL, Ross MI, Sober AJ, Sondak VK (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206PubMedGoogle Scholar
  74. 74.
    Morton DL, Thompson JF, Cochran AJ, Mozzillo N, Elashoff R, Essner R, Nieweg OE, Roses DF, Hoekstra HJ, Karakousis CP, Reintgen DS, Coventry BJ, Glass EC, Wang HJ (2006) Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med 355:1307–1317PubMedGoogle Scholar
  75. 75.
    Tuthill RJ, Unger JM, Liu PY, Flaherty LE, Sondak VK (2002) Risk assessment in localized primary cutaneous melanoma: a Southwest Oncology Group study evaluating nine factors and a test of the Clark logistic regression prediction model. Am J Clin Pathol 118:504–511PubMedGoogle Scholar
  76. 76.
    Gimotty PA, Van Belle P, Elder DE, Murry T, Montone KT, Xu X, Hotz S, Raines S, Ming ME, Wahl P, Guerry D (2005) Biologic and prognostic significance of dermal Ki67 expression, mitoses, and tumorigenicity in thin invasive cutaneous melanoma. J Clin Oncol 23:8048–8056PubMedGoogle Scholar
  77. 77.
    Barnhill RL, Fine JA, Roush GC, Berwick M (1996) Predicting five-year outcome for patients with cutaneous melanoma in a population-based study. Cancer 78:427–432PubMedGoogle Scholar
  78. 78.
    Gimotty PA, Guerry D, Ming ME, Elenitsas R, Xu X, Czerniecki B, Spitz F, Schuchter L, Elder D (2004) Thin primary cutaneous malignant melanoma: a prognostic tree for 10-year metastasis is more accurate than American Joint Committee on Cancer staging. J Clin Oncol 22:3668–3676PubMedGoogle Scholar
  79. 79.
    Mansson-Brahme E, Carstensen J, Erhardt K, Lagerlof B, Ringborg U, Rutqvist LE (1994) Prognostic factors in thin cutaneous malignant melanoma. Cancer 73:2324–2332PubMedGoogle Scholar
  80. 80.
    Kruper LL, Spitz FR, Czerniecki BJ, Fraker DL, Blackwood-Chirchir A, Ming ME, Elder DE, Elenitsas R, Guerry D, Gimotty PA (2006) Predicting sentinel node status in AJCC stage I/II primary cutaneous melanoma. Cancer 107:2436–2445PubMedGoogle Scholar
  81. 81.
    Mandala M, Imberti GL, Piazzalunga D, Belfiglio M, Labianca R, Barberis M, Marchesi L, Poletti P, Bonomi L, Novellino L, Di Biagio K, Milesi A, Guerra U, Tondini C (2009) Clinical and histopathological risk factors to predict sentinel lymph node positivity, disease-free and overall survival in clinical stages I-II AJCC skin melanoma: outcome analysis from a single-institution prospectively collected database. Eur J Cancer 45:2537–2545PubMedGoogle Scholar
  82. 82.
    Burton AL, Roach BA, Mays MP, Chen AF, Ginter BA, Vierling AM, Scoggins CR, Martin RC, Stromberg AJ, Hagendoorn L, McMasters KM (2011) Prognostic significance of tumor infiltrating lymphocytes in melanoma. Am Surg 77:188–192PubMedGoogle Scholar
  83. 83.
    Mraz-Gernhard S, Sagebiel RW, Kashani-Sabet M, Miller JR 3rd, Leong SP (1998) Prediction of sentinel lymph node micrometastasis by histological features in primary cutaneous malignant melanoma. Arch Dermatol 134:983–987PubMedGoogle Scholar
  84. 84.
    Wong SL, Brady MS, Busam KJ, Coit DG (2006) Results of sentinel lymph node biopsy in patients with thin melanoma. Ann Surg Oncol 13:302–309PubMedGoogle Scholar
  85. 85.
    Karim RZ, van den Berg KS, Colman MH, McCarthy SW, Thompson JF, Scolyer RA (2008) The advantage of using a synoptic pathology report format for cutaneous melanoma. Histopathology 52:130–138PubMedGoogle Scholar
  86. 86.
    Cochran AJ, Huang RR, Lee J, Itakura E, Leong SP, Essner R (2006) Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol 6:659–670PubMedGoogle Scholar
  87. 87.
    Clemente C, Rao S, Lupetti R, Tragni G, Pisarra P, Bersani I, Parmiani G, Mihm MC Jr, Sensi M (1998) Immunohistochemical analysis of the T-cell receptor beta-chain variable regions expressed by T lymphocytes infiltrating primary human melanoma. Lab Invest 78:619–627PubMedGoogle Scholar
  88. 88.
    Howard CJ, Hope JC (2000) Dendritic cells, implications on function from studies of the afferent lymph veiled cell. Vet Immunol Immunopathol 77:1–13PubMedGoogle Scholar
  89. 89.
    Grotz TE, Mansfield AS, Jakub JW, Markovic SN (2012) Regional lymphatic immunity in melanoma. Melanoma Res 22:9–18PubMedGoogle Scholar
  90. 90.
    Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774PubMedGoogle Scholar
  91. 91.
    Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117:1147–1154PubMedGoogle Scholar
  92. 92.
    Lee JH, Torisu-Itakara H, Cochran AJ, Kadison A, Huynh Y, Morton DL, Essner R (2005) Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res 11:107–112PubMedGoogle Scholar
  93. 93.
    Battaglia A, Buzzonetti A, Baranello C, Ferrandina G, Martinelli E, Fanfani F, Scambia G, Fattorossi A (2009) Metastatic tumour cells favour the generation of a tolerogenic milieu in tumour draining lymph node in patients with early cervical cancer. Cancer Immunol Immunother 58:1363–1373PubMedGoogle Scholar
  94. 94.
    Dranoff G, Soiffer R, Lynch T, Mihm M, Jung K, Kolesar K, Liebster L, Lam P, Duda R, Mentzer S, Singer S, Tanabe K, Johnson R, Sober A, Bhan A, Clift S, Cohen L, Parry G, Rokovich J, Richards L, Drayer J, Berns A, Mulligan RC (1997) A phase I study of vaccination with autologous, irradiated melanoma cells engineered to secrete human granulocyte-macrophage colony stimulating factor. Hum Gene Ther 8:111–123PubMedGoogle Scholar
  95. 95.
    Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC, Hodi FS, Liebster L, Lam P, Mentzer S, Singer S, Tanabe KK, Cosimi AB, Duda R, Sober A, Bhan A, Daley J, Neuberg D, Parry G, Rokovich J, Richards L, Drayer J, Berns A, Clift S, Cohen LK, Mulligan RC, Dranoff G (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci U S A 95:13141–13146PubMedGoogle Scholar
  96. 96.
    Vuylsteke RJ, Molenkamp BG, Gietema HA, van Leeuwen PA, Wijnands PG, Vos W, van Diest PJ, Scheper RJ, Meijer S, de Gruijl TD (2004) Local administration of granulocyte/macrophage colony-stimulating factor increases the number and activation state of dendritic cells in the sentinel lymph node of early-stage melanoma. Cancer Res 64:8456–8460PubMedGoogle Scholar
  97. 97.
    Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281PubMedGoogle Scholar
  98. 98.
    Itoh K, Tilden AB, Balch CM (1986) Interleukin 2 activation of cytotoxic T-lymphocytes infiltrating into human metastatic melanomas. Cancer Res 46:3011–3017PubMedGoogle Scholar
  99. 99.
    Rubin JT, Elwood LJ, Rosenberg SA, Lotze MT (1989) Immunohistochemical correlates of response to recombinant interleukin-2-based immunotherapy in humans. Cancer Res 49:7086–7092PubMedGoogle Scholar
  100. 100.
    Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107:2409–2414PubMedGoogle Scholar
  101. 101.
    Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633PubMedGoogle Scholar
  102. 102.
    Attia P, Maker AV, Haworth LR, Rogers-Freezer L, Rosenberg SA (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28:582–592PubMedGoogle Scholar
  103. 103.
    Powell DJ Jr, de Vries CR, Allen T, Ahmadzadeh M, Rosenberg SA (2007) Inability to mediate prolonged reduction of regulatory T cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy. J Immunother 30:438–447PubMedGoogle Scholar
  104. 104.
    Tarhini AA, Cherian J, Moschos SJ, Tawbi HA, Shuai Y, Gooding WE, Sander C, Kirkwood JM (2012) Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J Clin Oncol 30:322–328PubMedGoogle Scholar
  105. 105.
    Moschos SJ, Edington HD, Land SR, Rao UN, Jukic D, Shipe-Spotloe J, Kirkwood JM (2006) Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon alfa-2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J Clin Oncol 24:3164–3171PubMedGoogle Scholar
  106. 106.
    Petrella TM, Tozer R, Belanger K, Savage J, Wong R, Smylie M, Kamel-Reid S, Tron V, Chen BE, Hunder NN, Hagerman L, Walsh W, Eisenhauer EA (2012) Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J Clin Oncol 30:3396–3401PubMedGoogle Scholar
  107. 107.
    Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736PubMedGoogle Scholar
  108. 108.
    Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, Macrae S, Nelson M, Canning C, Lowy I, Korman A, Lautz D, Russell S, Jaklitsch MT, Ramaiya N, Chen TC, Neuberg D, Allison JP, Mihm MC, Dranoff G (2008) Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A 105:3005–3010PubMedGoogle Scholar
  109. 109.
    Ribas A (2012) Tumor immunotherapy directed at PD-1. N Engl J Med 366:2517–2519PubMedGoogle Scholar
  110. 110.
    Hong M, Puaux AL, Huang C, Loumagne L, Tow C, Mackay C, Kato M, Prevost-Blondel A, Avril MF, Nardin A, Abastado JP (2011) Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res 71:6997–7009PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Tobias Schatton
    • 1
  • Richard A. Scolyer
    • 2
  • John F. Thompson
    • 2
  • Martin C. MihmJr.
    • 3
  1. 1.Department of DermatologyBrigham and Women’s Hospital and Transplantation Research Center, Children’s Hospital Boston, Harvard Medical SchoolBostonUSA
  2. 2.Royal Prince Alfred Hospital, Melanoma Institute Australia and Sydney Medical SchoolThe University of SydneySydneyAustralia
  3. 3.Department of DermatologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations