Advertisement

Detecting Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma

  • Roger S. Lo
  • Hubing Shi
Part of the Methods in Molecular Biology book series (MIMB, volume 1102)

Abstract

V600BRAF mutation was identified as an ideal target for clinical therapy due to its indispensable roles in supporting melanoma initiation and progression. Despite the fact that BRAF inhibitors (BRAFi) can elicit anti-tumor responses in the majority of treated patients and confer overall survival benefits, acquired drug resistance is a formidable obstacle to long-term management of the disease. Several aberrant events including RTK upregulation, NRAS mutation, mutant BRAF amplification or alternative splicing, and MEK mutation have been reported as acquired BRAFi resistance mechanisms. Clinially, detection of these resistance mechanisms help understand drug response patterns and help guide combinatorial therapeutic strategies. Therefore, quick and accurate diagnosis of the resistant mechanisms in tumor biopsies has become an important starting point for personalized therapy. In this chapter, we review the major acquired BRAFi resistance mechanisms, highlight their therapeutic implications, and provide the diagnostic methods from clinical samples.

Key words

BRAF RTK NRAS MEK MAPK Drug resistance Molecular diagnosis 

References

  1. 1.
    Davies H, Bignell GR et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954PubMedCrossRefGoogle Scholar
  2. 2.
    Bollag G, Hirth P et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599PubMedCrossRefGoogle Scholar
  3. 3.
    Flaherty KT, Puzanov I et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819PubMedCrossRefGoogle Scholar
  4. 4.
    Chapman PB, Hauschild A et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedCrossRefGoogle Scholar
  5. 5.
    Hauschild A, Grob J-J et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365PubMedCrossRefGoogle Scholar
  6. 6.
    Falchook GS, Long GV et al (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379:1893–1901PubMedCrossRefGoogle Scholar
  7. 7.
    Nazarian R, Shi H et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRefGoogle Scholar
  8. 8.
    Johannessen CM, Boehm JS et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972PubMedCrossRefGoogle Scholar
  9. 9.
    Poulikakos PI, Persaud Y et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390PubMedCrossRefGoogle Scholar
  10. 10.
    Shi H, Moriceau G et al (2012) Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3:724PubMedCrossRefGoogle Scholar
  11. 11.
    Wagle N, Emery C et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096PubMedCrossRefGoogle Scholar
  12. 12.
    Villanueva J, Vultur A et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695PubMedCrossRefGoogle Scholar
  13. 13.
    Prahallad A, Sun C et al (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–103PubMedCrossRefGoogle Scholar
  14. 14.
    Corcoran RB, Ebi H et al (2012) EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF-mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2:227–235PubMedCrossRefGoogle Scholar
  15. 15.
    Yadav V, Zhang X et al (2012) Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J Biol Chem 287:28087–28098PubMedCrossRefGoogle Scholar
  16. 16.
    Duncan JS, Whittle MC et al (2012) Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149:307–321PubMedCrossRefGoogle Scholar
  17. 17.
    Shi H, Kong X et al (2011) Combinatorial treatments that overcome PDGFRβ-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res 71:5067–5074PubMedCrossRefGoogle Scholar
  18. 18.
    Vigil D, Cherfils J et al (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10:842–857PubMedCrossRefGoogle Scholar
  19. 19.
    Fedorenko IV, Gibney GT et al (2013) NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene 32(25):3009–3018PubMedCrossRefGoogle Scholar
  20. 20.
    Flaherty KT, Infante JR et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703PubMedCrossRefGoogle Scholar
  21. 21.
    Kobayashi S, Boggon TJ et al (2005) EGFR mutation and resistance of non–small-cell lung cancer to gefitinib. N Engl J Med 352:786–792PubMedCrossRefGoogle Scholar
  22. 22.
    Patel SP, Kim KB (2012) Selumetinib (AZD6244; ARRY-142886) in the treatment of metastatic melanoma. Expert Opin Investig Drugs 21:531–539PubMedCrossRefGoogle Scholar
  23. 23.
    Emery CM, Vijayendran KG et al (2009) MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci 106:20411–20416PubMedCrossRefGoogle Scholar
  24. 24.
    Shi H, Moriceau G et al (2012) Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. Cancer Discov 2:414–424PubMedCrossRefGoogle Scholar
  25. 25.
    Dörrie J, Wellner V et al (2006) An improved method for RNA isolation and removal of melanin contamination from melanoma tissue: implications for tumor antigen detection and amplification. J Immunol Method 313:119–128CrossRefGoogle Scholar
  26. 26.
    Lagonigro MS, De Cecco L et al (2004) CTAB-urea method purifies RNA from melanin for cDNA microarray analysis. Pigment Cell Res 17:312–315PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Roger S. Lo
    • 1
  • Hubing Shi
    • 1
  1. 1.Department of Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations